
Development and Refinement of a
Chatbot for Cybersecurity Support

Bulin Shaqiri
Zurich, Switzerland

Student ID: 17-701-442

Supervisor: Muriel Franco, Eder Scheid
Date of Submission: February 4, 2021

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Cybersecurity is increasingly getting the attention it deserves. At the latest now that
the Covid-19 pandemic has gripped the entire world and employees are forced to work
from home wherever possible, thereby creating new vulnerabilities for cybercriminals to
exploit, the importance of cybersecurity is even more evident.
In the past years, however, the investments as such have been rising, with the vast ma-
jority moving towards security as a service, and thus contracting off-site protection from
various providers. Together with recommender systems, the sheer volume of solution
alternatives can be managed, but still requires expertise to correctly specify the require-
ments. End-users are therefore not enabled to enter their demands in a simple and quick
way. While other fields have explored conversational agents (i.e., chatbots) as possible
solutions, including some approaches in cybersecurity, there has still been no work that
has used such conversational agents to improve cybersecurity management. In this sense,
the overall objective of this thesis is to provide a prototype that allows end-users to submit
their requests for cybersecurity support, with the conversational agent then responding
with accurate answers, so that the insightful information extracted from the conversation
can be used by end-users during the cybersecurity decision-making process.

i

ii

Acknowledgments

First, I would like to express my deepest gratitude to my supervisor, Muriel Franco, for
his unwavering support, interesting discussions, and valuable and insightful advice and
suggestions throughout the thesis. It has been such a pleasure and incredibly inspiring to
work with someone as enthusiastic and passionate as Muriel.

I would like to extend my sincere thanks to Prof. Dr. Burkhard Stiller, my co-supervisor
Eder Scheid, and everyone else from the Communication Systems Group (CSG) involved
in the SecBot project, for giving me the opportunity to work on such a fascinating topic.

Finally, I also wish to thank my family and friends for their endless support and encour-
agement all throughout this time.

iii

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Motivation . 2

1.2 Description of Work . 2

1.3 Thesis Outline . 3

2 Background 5

2.1 Cybersecurity Threats . 5

2.1.1 Distributed Denial-of-Service (DDoS) 5

2.1.2 Malware . 7

2.1.3 Phishing . 9

2.1.4 Countermeasures . 11

2.2 Natural Language Processing . 11

2.3 Chatbots . 12

2.4 Rasa . 14

3 Related Work 17

4 SecBot 19

v

vi CONTENTS

5 Approach and Refinement 23

5.1 Initial Setup and Configurations . 24

5.2 New Features . 24

5.2.1 Attack Support Feature . 24

5.2.2 Forms . 28

5.2.3 Training Data . 29

5.2.4 Actions . 31

5.2.5 Slots . 32

5.3 Refinements . 33

5.3.1 Training Improvements . 33

5.3.2 Training Data . 34

5.3.3 Custom Actions . 34

6 Implementation 37

6.1 Configuration . 37

6.2 Symptom Description Feature . 40

6.3 Attack Support Feature . 47

6.4 Integration with Telegram . 52

7 Evaluation 55

7.1 Case Study . 55

7.1.1 Attack Identification Scenario . 56

7.1.2 Attack Information Scenario . 57

7.1.3 Protection Measures Scenario . 58

7.2 Performance . 59

7.3 Discussion and Limitations . 62

8 Summary and Conclusions 65

Bibliography 66

CONTENTS vii

Abbreviations 73

List of Figures 74

List of Tables 75

List of Listings 77

A Installation Guidelines 81

B Contents of the CD 83

C SecBot Responses 85

D Tested Pipelines 89

viii CONTENTS

Chapter 1

Introduction

Cybersecurity emerges to be one of the key player of the digital era. With the ever-
increasing enhancement of information technology and the resulting connectivity through-
out the networks, not only opportunities for businesses, but also new threats within the
operating cyberspace arise.
One such threat concerns the increasing number and complexity of attacks commited by
cybercriminals. Every 39 seconds, a cyberattack is conducted, leading to an average of
2’244 attacks daily. Alone in the first six months of 2019, more than 4 billion data records
were compromised due to data breaches [57]. Moreover, during this Covid-19 pandemic, in
which the corona virus forced employees to work remotely from home wherever possible,
the number of cyberattacks is not expected to decrease.
People with IT-background are usually aware of such cyberthreats and know already ba-
sic terms and concepts of cybersecurity whereas people without such a background often
do not even know about the basics which should already belong to common knowledge.
This could lead to serious consequences. [2], for example, highlights that only 61% of
the participants, that took part of the respective survey, could choose the correct defi-
nition of a phishing attack from multiple provided answers. Also, 45% confessed to use
the same passwords for different applications, and one of the most worrying result is that
90% admitted to using devices provided by their companies for private purposes [2]. Such
behaviour clearly does not correspond to the cybersecurity hygiene recommended of today.

There already exists a variety of security measures such as the standard ones including
firewall, virus scanner or validation systems. Then there are also other, more advanced
measures like sandboxing, bug bounty programs or even extensive security audits. And
since employees are nowadays the weakest link in the chain of security policy in an orga-
nization’s cyberspace, employee training has become absolutely vital [35, 44].
At this point, it must also be mentioned that not all companies actually have the same
capacity to spend on cybersecurity. Large enterprises such as banks or insurance com-
panies naturally have a greater budget to spend on such protection compared to small
and medium sized enterprises (SME) where to some extent around 37% of employees lack
basic digital skills. In addition, SMEs often don’t see cybersecurity as a major part of
their digital strategy and therefore do not feel any need resp. sometimes do not have
the necessary ressources to compete with larger companies for new security talents. This

1

2 CHAPTER 1. INTRODUCTION

somehow affects also larger businesses in a negative way. Cybercriminals have identified
SMEs as easier targets and try to enter the supply chain of larger businesses through
compromised systems of smaller ones [21]. Verizon pointed out that in 43% of security
breaches in 2019, small businesses were the victim [1].

1.1 Motivation

Nevertheless, companies have indeed been investing in cybersecurity protection through-
out the years with the spendings on such cybersecurity tools to be expected to reach
$123 billion in 2020 [13]. No less than 50% of these investments relate to security as a
service, which is based on cloud-delivered security through the use of various technologies
[27]. This model offers businesses numerous benefits. Always using the newest and most
up-to-date security tools as well as having experienced security professionals working for
you are just few of them [6]. However, with a pool of thousands of suppliers, it is likely
that the solutions offered may differ in terms of the vendors focus, such as supported
cyberattacks, costs, performance or simply the technology being used [4].
Being spoilt for choice, it becomes difficult for customer to get a clear overview of the
different possible solutions and choose the best one based on their requirements. In ad-
dition, not having a security specialist on board makes the decision-making process even
more challenging, especially when you are under attack. Thus, it is crucial to know which
off-site services come up with appropriate shielding. For that, software tools, which are
specialised in retrieving and filtering information in order to make best possible recom-
mendations, are a possible solution. Such tools are also known as recommender systems
and are widely used in many different areas [55].
In this regard, [25] presents a cybersecurity management support tool which is capable of
recommending appropriate protection services according to different demands such as re-
gion, deployment time, and price conditions. Nevertheless, this recommender system does
not enable end-users to specify their requests in an easy and efficient manner. In order
to define a precise cybersecurity strategy, meaningful interactions between the end-users
and specialist systems have to be provided.
In this sense, other areas have also been exploring and came up with an artificial intelli-
gence tool called chatbot as a viable solution. Chatbots are designed in a way that they
are able to have a conversation with a human in natural language and therefore are able
to facilitate the human-machine interaction by using various input methods [59].
However, there is no work exploring chatbots to improve cybersecurity management. For
[25], for example, chatbots could be used to allow end-users to specify their demands in
natural language, thereby helping to refine filters that determine which protection services
best meet the user’s needs.

1.2 Description of Work

The main goal of this bachelor thesis is for the student to implement new features and
knowledge into the prototype of the chatbot called SecBot, which has been initially devel-

1.3. THESIS OUTLINE 3

oped by the Communication Systems Group (CSG) of the University of Zurich. Besides
development of new features and knowlegde, the thesis also demands the refinement of
the inital implementation of SecBot. Hence, by finishing the thesis, SecBot should be able
to give appropriate answers regarding the requested cybersecurity support, so that users
can take those insightful responses into account for their cybersecurity decision-making
process.
In order to accomplish this goal, the student first needs to carry out basic research in
the areas of cybersecurity and chatbots. Once the basic understanding is acquired, the
student has to investigate the actual SecBot implementation and concurrently understand
Rasa, the actual framework being used, including the concepts of Machine Learning and
Natural Language Processing. After the acquirement of the technical background the
student then has to get familiar with the main requirements of cybersecurity manage-
ment. This step enables the student to provide SecBot with new information and custom
actions. Afterwards, the student will have to train the chatbot and will therefore provide
new stories that cover the new scenarios and information flows. In a concluding chapter,
the new features and improvements shall be evaluated with use cases and then discussed.

1.3 Thesis Outline

Chapter 2 provides a common knowledge which serves as a foundation to understand
the new features and enhancements.

Chapter 3 explores related work with an eye set on conversational chatbots.

Chapter 4 introduces SecBot in more detail. It gives a thorough overview of SecBot’s
capabilities and how it leverages current chatbot development concepts. It also discusses
the initial implementation before classifying SecBot using the metrics presented in Chapter
2.

Chapter 5 first explicitly defines the scope of the work and provides a non-technical
overview of the approach. This is then followed by a high-level description of the new
features that provide enhancements or new capabilities to the prototype.

Chapter 6 provides a more technical view of the implementation of SecBot. Thus,
implementation specifics of the configuration, the attack description feature and the attack
support feature are presented in a detailed manner. In addition, instructions are given on
how to integrate SecBot with the popular messaging application Telegram.

Chapter 7 first evaluates the implemented features based on a case study and then
proceeds with a discussion of SecBot’s performance, limitations, and challenges.

Chapter 8 summarizes the work on this thesis and finally concludes this project.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter provides you with the general knowledge and concepts that serve as a basis to
understand the improvements and novelties presented in the thesis. First, I will introduce
some main threats that have become common in today’s cyberspace. Up next, the concept
of natural language processing will be explained before presenting the notion of chatbots.
Finally, a brief introduction to the framework used, Rasa, will be given.

2.1 Cybersecurity Threats

Cybersecurity threats have always been a big issue and still continue to be so today.
These include various cyberattacks which are becoming increasingly more sophisticated
and difficult to defend against. From the wide variety of different cyberattacks, I have
selected three attacks that are presented in more detail in the subsequent sections.

2.1.1 Distributed Denial-of-Service (DDoS)

A distributed denial-of-service (DDoS) attack aims to disrupt or even take out online
services and their resources. It is similar to a denial-of-service (DoS) attack with the only
difference being how the attack is carried out. DDoS attacks are decentralised, which
means that the attack traffic does not come from one single source as it is the case in
DoS attacks. Instead, the cybercriminals make use of multiple compromised systems, also
known as botnets, with each infected device becoming a bot [11, 16]. This not only allows
to intensify the attacks, but also helps to cover the cybercriminal’s traces on the net [28].
Upon instruction, the hacker-controlled botnet then starts sending huge number of re-
quests to the victim’s server simultaneously, consuming a significant amount of its re-
sources. The server has then no longer the capacity to react to legitimate traffic, which
leads to a denial of service [11].
DDoS attacks can be decomposed into three large categories: volumetric, protocol-based
and application-layer based DDoS attacks, with each attack targeting a different layer of

5

6 CHAPTER 2. BACKGROUND

the network connection. Table 2.1 outlines all key characteristics of the different types of
DDoS attacks, which are also presented in more detail in the following sections.

Table 2.1: Types of Distributed-Denial-of-Service attacks

DDoS
Type Characteristics Scope Challenge

Volumetric
Attacks

Generation of sub-
stantial traffic vol-
umes to saturate
the bandwidth and
produce traffic con-
gestion.

Focus on bandwidth
depletion.

Mitigation of threats
that combine reflec-
tion/amplification at-
tacks with botnets.

Protocol-
based Attacks

Over-consumption of
server resources and
network intermedi-
aries (e.g. firewalls,
load balancer, etc).

Focus on resource de-
pletion.

Weaknesses of Inter-
net protocols (e.g.
TCP, UDP, ICMP,
etc.).

Application
Layer Attacks

Exploit weaknesses in
the application layer
in order to disrupt
resp. take out applica-
tions, online services
or websites.

Require less amount
of bandwidth than the
other attacks while
still being at least as
disruptive.

The challenge lies
in distinguishing le-
gitimate traffic from
malicious.

Volumetric Attacks: Volume-based DDoS attacks, also known as bandwidth consump-
tion attack, appear to be the most common category. Cybercriminals usually utilize
botnets to create sheer volume of traffic to literally flood a website, which then becomes
overloaded, thus causing network congestion. As a consequence, legitimate users are pre-
vented from interacting with the website. Volumetric attacks are measured in bits per
seconds (bps).[54].

• DNS-Amplification: During a DNS-Amplification attack, the cybercriminal makes
use of the weaknesses of the domain name system (DNS) servers. The perpetrator
sends small queries in which the IP addresses have been changed to the target’s one,
to open DNS resolver, which in turn reply with larger DNS responses to the spoofed
IP address of the victim. Instructing every bot within a botnet sending similar
request, the sheer volume of traffic heading towards the victim’s server grows even
more significantly [31].

Protocol-based Attacks: In contrast to volumetric attacks, protocol-based DDoS at-
tacks aim to use up both server resources as well as network appliance resources. They
are therefore also rightly referred to as state-exhaustion attacks. These attacks make use
of the vulnerabilities within the network and transport layer (OSI Layer 3 and 4), such as

2.1. CYBERSECURITY THREATS 7

forging protocol requests, to deny access to the victim’s service. The scale of measurement
is expressed in packets per seconds (pps) [11, 54].

• SYN-Flood: A SYN-Flood attack takes advantages of weaknesses in TCP hand-
shake. To establish a TCP network connection the client sends first a SYN packet,
which are basically initial request packets, to the target server. The server in turn
replies with a SYN/ACK packet to confirm the communication request. This reply
must then also be confirmed by the client by sending the ACK packet to the target
server. During a SYN-Flood attack, the cybercriminals block the third part of the
handshake process. Waiting for the ultimate confirmation of the handshake, which
obviously will never arrive, the victim’s server remains with many open connections,
thus being rendered unavailable by exhausting its resources. [10].

Application-layer Attacks: Also referred to as layer 7 DDoS attacks, the aim of the
application layer attacks is to fabricate a denial-of-service of an application, online service,
or a website by consuming a great amount of the victim’s server and network resources
[11]. Contrary to volumetric and protocol-based attacks, these attacks require much less
resources. The network requests themselves are not spoofed and therefore appear to be
legit at first sight (e.g. TCP connection). This makes it extremely tough to differentiate
the malicious traffic from the legitimate [54].
What makes these kind of attacks even more threatening is the varying necessity of re-
source usage during a client-server interaction. A simple request from the client side can,
for instance, enforce running large database queries on the server side. This asymmetric
nature of some Internet protocols can overload the server during an attack, thus rendering
it inaccessible to legitimate users [8]. The power of such an attack is expressed in request
per seconds (rps) [54].

• HTTP-Flood: Cybercriminals typically use botnets to overload the target’s server
with ressource-intesive HTTP requests, with the goal of exhausting the server’s
finite resources such that it is no longer capable of responding to legitimate traffic.
Moreover, mitigation of such attacks becomes more complex as it is difficult to
distinguish these requests from legitimate ones since they do not use spoofing or
reflection techniques. There exist different HTTP-Flood variants [9, 41] .

2.1.2 Malware

Malicious software, also known as malware, denotes a generic term that covers all software
programs which deliberately cause damage to systems or other software programs. There
exist a broad range of attacking threats trying to sneak into your system, reaching either
to your data or core system functionality to derange the ordinary operations [37, 12].
From this pool of possible attacks, I will discuss three of them in more detail in the
following sections and set out the main findings in Table 2.2.

8 CHAPTER 2. BACKGROUND

Table 2.2: Types of Malware

Malware
Type Characteristics Scope Challenge

Virus

Self-replication into
other programs to
either exploit vul-
nerabilities in the
compromised system
or cause damage to it.

Requires a host pro-
gram which must be
actively executed by a
user.

Detection and mitiga-
tion of evolutionary or
new viruses.

Worm

Self-replication into
other systems, target-
ing entire networks to
create large botnets
and resp. or damaging
the infected ones.

Stand-alone program
which does not need
host files or user inter-
action.

The ability to spread
quickly and very easily
over a network.

Ransomware

Blocks users from ac-
cessing their system or
personal files and re-
quests payment of a
fee to regain access.

Requires other cyber-
attacks to spread.

Ransoms are hard to
track, as allmost all
payments are made in
cryptocurrency.

Virus: A virus is a malicious program which is capable of reproducing itself into other
executable programs or documents. To achieve this, the virus initially needs a host pro-
gram, which must then be actively executed by a user to be able to propagate further.
These infected executables are then in turn able to spread these malicious bits of codes
to other executable programs or even exchange them completely with a duplicate of itself
[36]. Viruses can be hugely damaging to your system. Apart from infecting other pro-
grams, the core functionalities, applications or existing data of the compromised system
may be manipulated or deleted [14]. With millions of viruses lurking around the Internet,
it becomes almost impossible to get all their definitions and signatures into a database so
that virus detection programs could identify and remove them, especially when it comes
to evolutionary resp. newly designed viruses [34].

Worm: Computer worms are yet another type of malicious software. They closely re-
semble viruses and are therefore often incorrectly used as synonyms.
Worms make also use of self-replication to reproduce themselves and infect other not yet
compromised systems, where they then stay active for as long as possible [51]. Other
than viruses, worms do neither need a host program nor active user interaction. They
are self-contained programs that strive for full access to the target system. Once they
find a way into your system, the duplication process starts and distribution takes places
via networks and internet connections. Since all duplicates inherit the same abilities,
all systems that were initially connected to an infected one are put at risk, with the in-
sufficiently protected systems becoming contaminated [30]. In this way, cybercriminals
attempt to infiltrate complete computer networks with the aim to establish a botnet with

2.1. CYBERSECURITY THREATS 9

which further cyberattacks can be conducted [58]. Moreover, worms also entail so-called
payloads. A payload is basically a malicious attachment containing other malware such
as ransomware or viruses, which in turn may attack and harm the imposed system in
their particular way. Besides, worms are also able to set up back doors to enable other
malicious software to exploit the compromised system at a later time [30].

Ransomware: Ransomware presents another form of malware, where cybercriminals
particularly pursue monetary incentives. There are many variations of ransomware with
screen-lockers and encrypting ransomware being the two main types [52].

• Screen-lockers: As the name implies, screen-lockers, or in short also only called
lockers, do block the access to your computer. Your data is not stolen or damaged.
You only see a screen including the information that you have been locked out and
payment instructions that need to be followed in order to regain the access [52].
Cybercriminals often combine these attacks with pretending to be law enforcement
authorities, such as the FBI, who freezes you out of your computer with the claim
that there has been illegal activity, and then charge you a fine [38].

• Encryption ransomware: Encryption ransomware, on the other hand, encrypt
critical data and files with complex algorithms such that no software or system is
able to decrypt them. Even tough you pay the demanded ransom, it is no guarantee
that the attacker provides the necessary private key to restore the access to the files
[52].

Ransomware is becoming more and more popular, especially due to payments made in
cryptocurrency, where cybercriminals traces can’t be tracked [12]. It has gone even to
the extent where you now can purchase ransomware as a service (RaaS) in the darknet
to cheaply carry out such attacks [40]. By 2021, Cybersecurity Ventures expects such
ransom attacks to be conducted on businesses every 11 seconds, skyrocketing the cost of
damages up to $20 Billion USD [60].

2.1.3 Phishing

The third cybersecurity threat I want to introduce is a cyberattack which relies on the
concept of social engineering. During a phishing attack, the cybercriminals’ objective is to
induce their targets to reveal precious and personal information such as (company) login
credentials, credit card information or business data. To achieve this, phishers often spoof
links or websites or even exploit vulnerabilities of genuine websites where they do hidden
and malicious redirects [46]. Moreover, phishing attacks also misuse human psychology.
After gaining the victim’s trust, cybercriminals often exert pressure by exploiting the
victim’s emotions (e.g. exploiting the fear of reputational damage) or generate curiosity
with the attachment [62]. Such phishing scams either end with cybercriminals financially
enriching themselves with the stolen information, or the attack served to deploy further
malware for future major cyberattacks [7].
In the following sections, I will present three main types of phishing and summarize the
key points in Table 2.3.

10 CHAPTER 2. BACKGROUND

Table 2.3: Types of Phishing

Phishing
Type Characteristics Scope Challenge

Standard
Phishing

Attempt to entice
targets to disclose
sensitive and valuable
data.

Targeting a large
number of users and
expecting that only a
few will be victimized.
Requires only mini-
mal preparatory work
from the criminal.

Encouraging users to
take steps and protect
themselves. Apart
from that, phishing
techniques are
constantly being
innovated, which
makes them difficult
to detect.

Spear Phish-
ing

Focused attacks on or-
ganizations or specific
individuals. Addi-
tional information
must be collected
from the criminal in
advance.

Whaling

Focused attacks on se-
nior or C-level man-
agement. Requires
maximal preparatory
work from the crimi-
nal.

Standard Phishing: This subform of phishing emphasizes quantity over quality. In this
sense, phishers focus on affecting a broad number of individuals, assuming that only a
few of them will be victimized. Using forged communications channels, such as emails,
cybercriminals craft them to look legitimate, thereby fooling their targets into disclosing
sensitive data through fake links and websites. Consequently, this approach does not
require attackers to prepare much work in advance [7, 46].

Spear Phishing: Contrary to standard phishing, spear phishing attacks are specifically
tailored to companies or particular individuals. To lunch such attacks, cybercriminals
need to do further investigations on the target’s side and then enrich the emails with
the collected information, such as personal data or data about the organization, to let
the message appear more trustworthy, and thus tempt them to open malicious links or
attachments [46, 47].

Whaling: Whaling is a special form of spear phishing, where the upper management of
organizations are set as targets. This includes the senior level management such as CEO,
CIO, CFO and other high-level professionals. What makes them attractive is the fact that
they have access to business-critical data (e.g. intellectual assets, customer information,
etc.) which could be traded for big money on the black markets. As this target group is
extremely well-trained in phishing attacks, phishers must do extensive research beforehand
and whale at the most opportune time [46, 48].

2.2. NATURAL LANGUAGE PROCESSING 11

Indeed, phishing attacks are very popular. In 2019, 32% of all data breaches were related
to such attacks [1]. Since cybersecurity is improving, so do phishing attacks, which are
constantly being refined to fool more people or get more outcome per victim [46]. Other
types that have emerged over time are voice phishing (also known as vishing), clone
phishing or sms phishing (also known as smishing).

2.1.4 Countermeasures

Tackling a DDoS attack is difficult in terms of discriminating between genuine and mali-
cious network traffic. A possible approach is using a web application firewall (WAF) that
is able to stop malicious requests. This is done with the help of rules, which are designed
to detect DDoS tools. User-defined rules can be implemented immediately to instantly
react to such attacks. Otherwise, there is also the possibility of blackhole routing, where
all the traffic is redirected to a null route and consequently discarded from the network.
This measure suits best when a website that is part of a larger network is attacked, thus
helping the rest of the network not to suffer from the immediate attack [11].

One obvious way to prevent malware is to install a quality anti-virus respectively anti-
malware program which periodically scans your device. This program along with all the
other installed software needs to be up-to-date in order to reduce the risk of a malware
attack. For website administrators, website security scans have the same effects and help
identifying and mitigating these kind of threats [12].
Moreover, backing up all available data on a regular basis has become inevitable. This
way, in the event of a ransomware attack, for instance, you can immediately access the
backed-up data and thus reduce the costs incurred for this attack [52].

When it comes to combating phishing attacks, the most effective countermeasure is to
create awareness of these kind of attacks among all employees. In this sense, not only
must security awareness training be conducted on a regular basis, but employees must
also be trained through simulations so that they acquire the ability to identify phishing
scams in real world situations [62].
Other useful measures include filters, which protects the user against spam, suspected links
and attachments, as well as fostering a strong credential hygiene, where passwords are
changed regularly with a certain complexity and authentication solutions are implemented
[46].

2.2 Natural Language Processing

Natural Language Processing (NLP) is a subarea of artificial intelligence (AI) which is
concerned with the human-computer interaction through the use of natural language.
When transforming raw user input in the form of unstructured data into a structured
form that computers understand, NLP uses various machine learning (ML) techniques to
deduce meaning. In this sense, several NLP tasks help to decompose the input data [26].
One important component of NLP is Natural Language Understanding, or shortly NLU.

12 CHAPTER 2. BACKGROUND

Characterized through the syntactic and semantic analysis of data, NLU tries to un-
derstand the meaning of the complete utterance. With the help of syntactic analysis
techniques, NLU evaluates whether the natural language conforms to grammatical rules.
This is done by using various methods such as lemmatization, part-of-speech tagging or
stemming. Then techniques of semantic analysis are used to understand and interpret
both the words and the structure of the sentences. In this regard, algorithms such as
the named entity recognition (NER), which identifies words or expressions as valuable
entities, or word sense disambiguation, which assigns a contextual meaning to a word, or
the natural language generation, which converts structured data into natural language,
are used [18, 26, 33].

2.3 Chatbots

A chatbot is a software program which is based on artificial intelligence technologies.
Also known under various other names, such as conversational agents, AI chatbot, digital
or virtual assistants, chatbots do enhance the human-computer interaction in a pleasant
way by simulating natural language conversations with its human end users. They can
be integrated into a variety of technologies allowing such conversations to take place on
websites, messaging applications, or on mobile apps [59, 19].

Nowadays, chatbots are present in almost every industry. The companies benefit above all
from efficiency at the operational level and cost savings, especially in the area of customer
service. Non-stop availability, lower customer latency, scalability or improved customer
retention are just some of the aspects that contribute to these cost savings, which are
expected to be around $8 billion by 2022, according to Juniper Research [43, 50]. No
wonder chatbots increase in popularity.
There exists thousands of chatbots with varying degrees of intelligence, which can be
classified into two main types:

• Transactional Chatbots: Also referred to as task-oriented or declarative chatbots,
transactional chatbots aim towards accomplishment of certain tasks. They guide the
user in a very well-structured and specific manner and often best improve the user
experience through automation of processes, trying to eliminate the user’s reliance
on experts or additional interfaces. If needed, these chatbots also take over the
interaction with other external systems. Furthermore, thanks to NLP, transactional
chatbots also exhibit basic AI skills that make them capable of processing and
answering simple queries or transactions [64, 42].

• Conversational Chatbots: Steered through data and predictions, conversational
agents are more ambitious than transactional chatbots. They engage users in in-
teractive, dialogue-oriented conversations where the chatbots may store important
information for later purposes. To achieve this, the conversational agents make use
of various AI technologies, including NLP, NLU and machine learning algorithms.
This ensures that they are always fully conscious of the context in which the con-
versation is taking place. Moreover, these chatbots can also be personalized so that
they can learn about the interests of users and make appropriate suggestions [42].

2.3. CHATBOTS 13

Based on my investigations I created the following taxonomy to furhter divide conversa-
tional chatbots into three subforms:

Table 2.4: Subtypes of Conversational Chatbots

Conversational Chatbots
Type Approach Limitations

Rule-based
Chatbots

Function like a decision-
tree where predefined
rules generate responses
(question-answer pairs).

Only show basic capa-
bilities where questions
outside of the predefined
set of rules can’t be an-
swered. Might become
extremely labor-intensive
to develope.

Machine Learn-
ing Chatbots

More dialog-oriented,
data-driven and pre-
dictive. They require
sample data sets to be
able to generalize from
the training processes.
They also learn from
patterns and previous
experiences.

Such chatbots are like
black boxes. If some-
thing goes wrong with
the model, it is difficult
to intervene, optimize or
improve. There is also a
lack of training data and
other regulations for pro-
tection of the collected
data.

Hybrid Model
Combination of rule-
based and machine
learning chatbots.

Black box and data pro-
tection issues remain.

Also known as linguistic-based model, rule-based chatbots anticipate what customer might
want to know and define answers to those likely questions. These question-answer pairs
are specified as rules and vary in the degree of complexity. They follow an if-then flow
which makes the conversation highly specific and structured. Questions that lie outside
the defined scope cannot be answered. Besides the slow development of such chatbots
there are also some benefits, such as faster training phase or easy integration with existing
systems [3].
This model can be further refined. For this purpose I present the following two categories:

• Menu/button-based Chatbots: This is an example of a chatbot with no required
AI skills. Based on a predefined knowledge database the chatbot offers the user
certain alternatives to click on and follow a particular scenario. Questions won’t
be given any attention as users can only click themselves through the decision tree.
Consequently, this type of chatbot is very straightforward in its nature and is slowest
when it comes to providing the desired response [45].

• Keyword recognition-based Chatbots: These kind of chatbots use NLP to ex-
tract keywords from the users’ queries and match them with the correct answer using

14 CHAPTER 2. BACKGROUND

AI. When there are many similar questions, such chatbots tend to have problems
disinguishing between them and possibly give wrong answers [45].

Machine learning chatbots, or AI chatbots, make use of AI technologies and NLP to
extract the right intentions from the user’s utterances within the relevant context and
then respond in natural language [3]. Contrary to rule-based chatbots, AI chatbots can
understand queries other than defined within the training data. They are developed in
such a way that over time they are able to learn on their own from previous conversations
and become more intelligent. This is achieved through different algorithms and patterns
that are constantly fed with new data, as the chatbots experience a new situation with
each individual user, thus also gaining greater decision-making capabilities [17]. Moreover,
some AI chatbots use additionally sentiment analysis to provide users a unique experience.
The use of machine learning chatbots offers clearly more advantages than disadvantages.
However, one disadvantage worth mentioning is the fact that such chatbots work like
black boxes. If there are any problems with the model, it is extremely difficult to react
to them. Other drawbacks are the limited set of available training data which have to be
prepared and processed by humans or regulations protecting the collected data [59].

The third subtype introduced is a hybrid model which combines the best features of both,
rule-based and machine learning chatbots. By using this approach, businesses become
faster and more flexible. If they don’t have any data available, the provision of such
sample data sets can be very expensive and take a significant amount of time. With
the hybrid model, they can simply provide their rules in this case and then train the
chatbot with real user input. On the other hand, when data is available, then using the
features machine learning chatbots provide yield the best outcome [59]. In any case, this
combination constitutes a win-win situation. Further, since the models in this combination
complement each other, there are no limitations to be added. The black box and data
protection regulation issues remain, but the original limitations of rule-based chatbots
decreased considerably.

2.4 Rasa

Rasa is a conversational artificial intelligence framework [49] that assists in creating con-
text conscious conversational agents by providing various machine learning tools. Since
Rasa is open source software, it provides many highly customizable and powerful features
that allow its users to influence the creation of chatbots to the fullest extent.
Being equipped with state-of-the-art NLP technologies including natural language un-
derstanding, Rasa easily handles unstructured user messages and converts them into a
structured, machine-readable form such as intents and entities. Moreover, Rasa’s dia-
logue management allows for conversations with varying degrees of complexity, such as
off-topic switches or going back-and-forth. For this purpose, important contextual infor-
mation can be persisted in bot-memories, which are also known as slots.
Another valuable feature is the possibility to train your chatbot interactively in addition
to supervised learning [15]. In this sense, training data is directly created through the
interaction with your conversational agent. There is also the possibility to give immediate

2.4. RASA 15

feedback and to correct wrong predictions. To wrap it up, the created chatbots can be
integrated in various messaging channels such as Slack, Facebook, or Google Home.

Due to its open source nature, Rasa brings in some transparency into the black box
problem, which was discussed in Chapter 2.3, since each algorithm can be looked up and
adapted for its own purpose. No wonder that Rasa worldwide enjoys the trust of some
big players like Adobe, UBS, BMW or HCA Healthcare.

16 CHAPTER 2. BACKGROUND

Chapter 3

Related Work

In recent years, chatbots have experienced an extreme increase in popularity. Whilst in
the beginning transactional chatbots were prefered, especially before crucial advances in
machine learning and NLP, conversational agents are now being increasingly used. In the
next few sections, some conversational chatbots from different areas will be presented and
discussed.

For the field of e-business, [61] proposes a rule-based chatbot to support the customer
service division. By using Artificial Intelligence Markup Language (AIML) templates to
specify rules, the chatbot aims to automate the live chat support and thus be able to
respond to raised questions and concerns.

In [32] the authors presents Lumi, a machine learning chatbot that allows intent-based
networking (IBN) by using natural language. Using Lumi, network operators only have
to input high-level policies in order to configure the network. Provider-specific languages
or low-level configurations know-how are no more required. Moreover, after the relevant
information and intents are extracted, Lumi requests confirmation from the operator and
then checks for contradicting policies before the deployment. In this way, the chatbot can
take feedback into account for learning throughout time.

With particular regard to security, [5] proposes a chatbot that provides employees without
the necessary technical know-how with specialists security expertise about the company
network without interrupting network security employees, who in turn can fully focus on
the more complex security relevant tasks. For questions such as whether network traffic to
a certain server is permitted, the chatbot would interact with required applications such
as Network Security Management tools and would respond to the user in simple natural
language.
In this sense, we can derive that in order to built this kind of converational agent, a
machine learning chatbot approach must be chosen. Pursuing a rule-based approach
would result in a highly labor-intensive development and at the same time bear the risk
of missing on important rules.

The United Kingdom, on the other hand, presents an actual implementation of a security
related conversational agent. The Cyber Helpline [29], a non-for-profit institution provides

17

18 CHAPTER 3. RELATED WORK

UK citizens with a chatbot that offers immediate assistance in the event of cybercrime
incidents for free. Victims can directly and at any time start the conversation with the
chatbot, typing in freely their concerns in natural language. The chatbot then analyzes
the input on its own with the help of NLP and machine learning (ML) and tries to
correctly identify the attack and offering next few steps to combat the attack. In the
case of more complex attacks, the chatbot prioritize and forward the incidents to human
volunteers, which consist of cybersecurity experts and computer science graduates [29, 63].
Considering the taxonomy presented on Table 2.4, due to the use of various AI technologies
and the ability to help without human interventions, we can further classify The Cyber
Helpline’s solution as a subform of machine learning chatbots.

Another real world application of a chatbot within the field of cybersecurity constitutes
Elastic Endpoint Security’s Artemis [20]. Artemis is an intelligent assistant developed to
significantly ease the work of cybersecurity experts. The chatbot takes care of the resource
consuming analysis of data, freeing up the scarcely available security talents for more
complex work. Moreover, it enables experts to write their questions in natural language
and eliminates the need for elaborate query languages in order to get the desired answer
or data. Artemis has been trained with the experience of various senior security experts
who have been active in several sectors, such as the financial, the military or government
sector. With this knowledge base, Artemis can efficiently predict the immediate moves and
operations based on the actual incident. Consequently, no matter how much experience
the cybersecurity experts possess, Artemis contributes to improving the workflow [20]. As
we have just seen, Artemis employs NLP and other AI technologies, so that we can add
Artemis as a direct consequence to the family of machine learning chatbots.

As we just have seen, there are already some approaches that employ conversational
chatbots for the area of cybersecurity, though there is no work that examines chatbots to
improve cybersecurity management. In this sense, [23] introduces SecBot, a cybersecurity-
driven chatbot, which will be more closely presented in the next chapter.

Chapter 4

SecBot

SecBot is a conversational chatbot that was previously defined by the Communication
Systems Group of the University of Zurich. In their scientific paper [23], Franco et al.
present a cybersecurity-driven conversational agent aiming towards the simplification of
the cybersecurity planning and management of small and medium-sized businesses.
As the introduced conversational agent will be presented in more detail in the following
sections, the subsequent content of this chapter is therefore based on [23].

SecBot is especially designed for users with little to no security knowledge. It is able to
receive user requests for cybersecurity support and then provides detailed responses which
the user then takes into account in the cybersecurity decision-making process.
More specifically, SecBot’s capabilities include the identification of cyberattacks on the
basis of associated symptoms that the user submits, the specification of solutions and
configurations tailored to the user’s business requirements as well as giving insightful
information to help deciding on cybersecurity investments and risks. To achieve this,
SecBot makes use of various concepts from the chatbot development:

• Intents: Intents correspond to users’ intentions while interacting with a chatbot.
Every intention from every user utterance is mapped to an intent.

• Entities: Entities are structured information, which can be extracted from user
intents. They are bound to knowledge databases, in which acceptable values are
given for each entity. This ensures more precise answers.

• Stories: Stories represent conversations between humans and chatbots. They re-
quire the specification of the necessary steps and based on the input or response of
the user, many different conversation paths emerge. This concept is crucial for the
model to generalize and thus cover conversation flows that have not been thought
about, as well as predicting the subsequent actions correctly.

• Actions: Every response from a chatbot to a user input can be considered as
an action. More specifically, actions can consist of giving feedback as a response,
listening to new utterances, or simply executing user-defined actions, which include
custom code for reacting to specific flows.

19

20 CHAPTER 4. SECBOT

In order to proof the feasibility of SecBot, the CSG created a Proof-of-Concept (PoC),
where for each capability a basic implementation was developed. For this purpose, the
Rasa version 1.4.6 was used.

Figure 4.1 illustrates an example of how an intent, which includes multiple entities, is
implemented in SecBot. More particularly, it shows the problem desc intent, which should
enable SecBot to recognize when a user is reporting a certain problem he is encountering.

Figure 4.1: SecBot’s desc symptom intent [24]

Below the title of the intent, multiple training examples are provided. For each of them,
all entity values are indicated in square brackets and their corresponding entities directly
behind them in round brackets.

As mentioned before, SecBot makes also use of the concept of Stories, so that the ML
algorithms can learn more efficiently, and thus acquire a deeper knowledge regarding the
extraction and processing of user input. For that, two approaches were classified: The
first one being a reactive approach which focuses on scenarios where defending against
impending attacks is priority and the second one being a proactive approach where the user
intends to have a more cost-effective and resilient cybersecurity strategy for his business.

Figure 4.2: SecBot’s Files encrypted story [24]

Figure 4.2 shows a story based on the reactive approach. Intents are annotated with an
asterisk character and extracted entities are specified within curly brackets. Below each
intent, you then specify the sequence of actions which should take place. Since chatbots
do not run the action server during training phases, slots must be set manually in stories.
In this example, this is done as the first action after SecBot recognized the problem desc
intent. The actions action symptoms and action idattack are custom actions which run

21

custom code to process the provided symptoms and possibly identify cyberattacks.
Custom actions are written in an external file using the Python programming language.
Besides the very basic attack identification story, SecBot also provides basic stories for
protection configuration and economic analysis, which in turn also use custom actions.

By using stories to generalize to unseen conversation flows indicates that SecBot follows a
machine learning-based approach. On the other hand, stories are basically like hard-coded
rules. Based on inbound user intents, SecBot is trained to respond with an appropriate
action. This behaviour, in turn, is based on the rule-based approach. Thus, recalling
Table 2.4, we can clearly classify SecBot as a hybrid chatbot model by leveraging features
of both concepts.

As introduced in the previous paper [23], SecBot provided us with a PoC, thereby giving
us the opportunity for many improvements. The aim of this thesis now is to enrich
the prototype with new features and knowledge (e.g. Intents, Entities, Stories, Custom
Actions, etc.), and thus provide a working prototype that generates accurate responses to
user demands.

22 CHAPTER 4. SECBOT

Chapter 5

Approach and Refinement

As mentioned in the previous chapter, the actual prototype of SecBot does not provide
a fully fledged out implementation. The available code clearly only serves to proof the
feasibility of the proposed conversational agent. So in that sense, the state of the prototype
gives us the opportunity for numerous improvements.
For that purpose, there are generally three broad dimensions which can be considered for
further expansion: cyberattack identification based on provided symptoms, specification
of solution and configurations, as well as cybersecurity investments support. For each of
these dimensions, the enhancement includes the development of new features, i.e. new
intents, entities, stories, etc. in addition to new scenarios.

However, due to time constraints, I will not be able to address all of the three dimensions
and must therefore narrow down the scope of the thesis. For this reason, I have decided
to set my focus on two features that will enhance SecBot’s usability in delivering cyber-
security support, especially for non-security experts.
The first feature to be addressed, the symptom description feature, aims to correctly ex-
tract and process symptoms from user input in which users describe the problems they
are experiencing. As part of SecBot’s attack identification capability, the elaboration of
this feature is vital to the chatbot’s ability to effectively capture the required information.
The second feature to be covered is an attack support feature, which aims to provide users
with general information about certain attacks such as a general description, differences
between two similar attacks, or common protection measures.
In addition to the development of these two features, the optimization and configuration
of the training data set constitutes a third subgoal, which enables the model to be trained
more efficiently and thus achieve higher accuracy in understanding the NLU data and
predicting the next actions.

The remainder of this chapter provides a non-technical overview of the approach, new
features, and how these new features are then used to refine SecBot or provide new
capabilities.

23

24 CHAPTER 5. APPROACH AND REFINEMENT

5.1 Initial Setup and Configurations

First of all, I had to deploy SecBot from the respective GitLab repository [24] to my
computer. The prototype was developed using the Rasa version 1.4.6. Since Rasa is a
newer framework, there have been and will be major changes in new versions that will
impact the development of conversational chatbots and SecBot in particular.

So was it with the introduction of the Rasa Open Source release candidate 2.0.0rc2 just
shortly after the start of the thesis. This release candidate was basically a preliminary
version of Rasa 2.0 that introduced major changes, such that all of the code implemented
with Rasa Open Source 1 became legacy code. With this in mind, the migration to Rasa
2.0.0rc2 was inevitable in order to best improve SecBot by taking advantage of the various
new or improved features and concepts. It involved as a direct consequence the adjustment
of SecBot’s configurations file, where deprecated policies needed to be properly replaced,
as well as SecBot’s training data files, where the data type was changed from markdown
to yaml.

Despite the many improved and also new features, there were also many drawbacks. The
Rasa team has failed to provide detailed documentation and tutorials for the novelties and
enhancements right from the beginning, which may result in newbies, including myself,
missing on important information during development. Moreover, these many changes
led to various bugs in Rasa’s source code that could be only continuously fixed with new
releases. That said, the continuing development of SecBot included the task of always
keeping an eye out for new versions and migrating accordingly in order to best improve
the conversational agent.
Since the command line interface (CLI) was least affected by the bugs, training the dia-
logue management model and chatting with the bot has been done through Rasa’s CLI.

5.2 New Features

5.2.1 Attack Support Feature

As mentioned before, this feature provides general information about certain cybersecurity
attacks that have been covered in Chapter 2.1. It includes new and different conversa-
tion flows such as requesting general information, comparing similar attacks with each
other (e.g. computer worm vs. computer virus) or providing information about common
protection measures. With this in mind, besides providing the functionality in the code,
I also needed to add more knowledge to the chatbot. For this purpose, in addition to
the information provided in Chapter 2, I have mapped the information of the subsequent
tables according to the concepts of Intents, Entities, Stories, Actions, and so on. For each
attack discussed in Chapter 2.1, the tables list the apparent symptoms when an infection
or an actual attack occurs and the corresponding effects of such infections or attacks.
Even though this scenario is somewhat intertwined with the dimension of supporting
cybersecurity investments and risks, it is nonetheless a new feature added to SecBot.

5.2. NEW FEATURES 25

Table 5.1 presents general symptoms and the impact on businesses specifically regarding
DDoS threats. As you can see, there are quite a few symptoms that indicate a possible
DDoS attack.

Table 5.1: Symptoms and Impacts of DDoS Attacks

DDoS Attack
Symptoms Impact

• Website or service becomes unex-
pectedly slow.

• Website or service becomes all of a
sudden unavailable.

• Unable to access a website in the
long term.

• Suspect amount of network traffic ei-
ther from one IP address or a range
of different IP addresses.

• Inbound traffic flood from users with
similar behavior patterns, including
device type, location or simply the
version of web browser.

• An inexplicable increase in requests
to a website or endpoint.

• Unusual traffic flows (e.g. spikes at
odd times of the day or spikes all 20
minutes, etc.).

• Extremely slow access to files.

• Increasing amount of spam emails,
trying to overload the network.

• Slow servers responding in minutes
instead of seconds (could also be
the old equipment or a natural spike
from a news event).

• Slow computing performance in gen-
eral (e.g. taking longer as usual for
routine tasks).

• Website breakdown: As long as your
website is not available it will harm
your reputation since other compa-
nies will not be able to access it
as well. It could also influence the
search ranking in a negative way.

• The attack on one server might have
a negative impact on several other
websites as well.

• Rising vulnerability of websites:
Such attacks may only serve to make
the website or server more suscepti-
ble to further attacks, such as hack-
ing or data theft, as all resources are
dedicated to getting everything back
up and running.

• Lost time and money: In a worst-
case scenario where backups are not
available, companies might end up
hiring experts to completely recreate
the entire website from the ground
up, highlighting security issues for
future cyberattacks. Furthermore,
in industries such as e-commerce,
website downtime would cause a
huge loss of revenue.

26 CHAPTER 5. APPROACH AND REFINEMENT

Depending on the severity of the attack, some of the possible effects may be more pro-
nounced than others. In general, however, it is said that the reputational damage suffered
by companies is the most serious impact of such attacks [53].

Table 5.2 shows the same characteristics, but tailored to malware attacks. It is worth
noting that while DDoS attacks are more of a threat to companies which have a strong
presence on the Internet, malware attacks, on the other hand, constitutes a cybersecurity
threat to any kind of business.

Table 5.2: Symptoms and Impacts of Malware Attacks

Malware Attack
Symptoms Impact

• Continuous crashes (e.g. systems,
programs, Blue Screen of Death).

• Slow computer performance (e.g.
sluggish start, slow when loading ap-
plications).

• Unusual experience when surfing on
the Internet (e.g. new toolbars pop-
ping up, inexplicable redirects).

• Unusual and unfamiliar new desktop
icons (e.g. Potentially Unwanted
Programs (PUPs)).

• Difficulties with the hard drive (e.g.
loud noises, excessive activity on
computer).

• Computer storage is inaccessible or
corrupted.

• Unusual error messages.

• Unwanted and annoying popup mes-
sages.

• Disabled security program.

• No access to critical programs.

• Encrypted files or programs.

• Data breaches: Unauthorized access
to confidential data. By infiltrat-
ing the target’s server, sensitive data
can be stolen, which can lead to
identity theft, amongst other things.

• Downtime: Attacks can break down
the company’s network infrastruc-
ture which will have severe effects on
its operations.

• General disruption or even block-
ing of services by taking control of
system-critical programs.

• Long-term damage to the company’s
data, infrastructure and reputation,
leading directly to the loss of cus-
tomers.

• Money loss respectively money ex-
tortion

There are some ambiguous symptoms, such as ”slow computer performance” or ”slow

5.2. NEW FEATURES 27

access to file”, which are listed in Table 5.1 and Table 5.2. Such symptoms could also be
caused by several different attacks or simply have a different origin, such as slow Internet
connection or old equipment. Nevertheless, these are symptoms that need to be taken into
consideration despite the possibility that they do not have an evil origin. This underlines
all the more the complexity of such attacks, whose detection is becoming more and more
difficult with every passing day.
The optimization of the attack tree algorithm, which is not within the scope of this thesis,
would then have to take such symptoms into consideration when investigating a possible
attack.

Table 5.3: Symptoms and Impacts of Phishing Attacks

Phishing Attack
Symptoms Impact

• Inconsistencies in domain names:
e.g. received email from a com-
pany using a public domain like
”@outlook.com”, or misspelt domain
names.

• Grammatical (and spelling) errors in
emails.

• Email contains threats or generates
a sense of urgency.

• Email including suspicious links or
attachments.

• Emails asking for login, payment or
other personal information.

• Unfamiliar tone or greeting (e.g.
when family or employees become
too formal).

• Recipient has not started the com-
munication.

• Uncommon requests: E.g. email
from IT department sending a link
for a security patch for the recipi-
ent’s computer.

• Financial damage: In the event of
such an attack, on the one hand
there are direct costs due to data
protection breaches, which amount
to approximately 3.86 million dol-
lars, but on the other hand there are
also fines to be paid, which are im-
posed by regulatory institutions.

• Reputational damage: Company ap-
pears unreliable and unsafe to the
public which may lead to the loss of
customers.

• Loss of enterprise value: The dam-
age to the business’ reputation can
cause investors to lose confidence
and withdraw.

• Intellectual property theft: The
compromise of confidential data,
such as trade secrets, research re-
sults, or formulas as a direct conse-
quence of a phishing attack can re-
sult in wasted research investments
and a substantial financial loss.

• Business disruption occurs when
systems must be taken offline until
the threat is eliminated.

28 CHAPTER 5. APPROACH AND REFINEMENT

Table 5.3 introduces the respective information for phishing attacks. Verizon reports that
in 2020, phishing attacks were involved in over 60% of all occured data breaches [65]. Since
most of these attacks are conducted through email scams, most of the listed symptoms
refer to symptomatic phishing signs in emails.

It is now clear what information has to be considered when extending SecBot’s knowledge
base in order to be able to implement this newly proposed functionality. Therefore, the
following sections can from now on focus on a brief introduction of the new corresponding
intents, actions, rules, etc. for both the attack information and attack description feature.

5.2.2 Forms

During the analysis of SecBot’s initial implementation, I recognized that the entire core
logic was based on custom actions, training stories and their generalization. For instance,
the symptom capturing process was defined by only two stories, which were then used to
train SecBot to recognize, extract, and process the symptoms provided by the user. For
simple conversation cases, this is a legitimate approach. However, with more details, the
degree of complexity grows immensely. To cover the various flows of multi-turn dialogues,
one would need a sheer amount of training stories to train and generalize from, such that
the chatbot could be able to almost always extract all the necessary information and
react appropriately to unforeseen paths. Thus, the training data would become bigger
and bigger.

That is why I introduced forms as a completely new feature to SecBot. Forms represent a
conversation pattern that is used to collect important pieces of information in a dialogue
with the user. Since forms do store the requested information in slots, form actions are
therefore also referred to as slot-filling processes. By leveraging forms, the business logic
can be easily implemented in conversational agents.

In this sense, in order to efficiently gather all the necessary information for the attack
identification process, I equipped SecBot with two new forms: a symptom form and a
more info form. The first is used when the user initially wants to submit specific symp-
toms or provide a general description of the problem, whereas the latter is used when
the identification of the attack failed with the actual symptoms provided via the symp-
tom form and you want to add more symptoms and then try again.
By using forms for the symptom description scenario, the complexity of the information
gathering process, for which I was able to implement a strict logic, is significantly re-
duced. With this in mind, SecBot is now able to enforce important information from the
user and store it appropriately for later use. Furthermore, to cover all happy paths, i.e.
conversation flows where the user submits all the necessary information, significantly less
training stories are needed, thus shrinking the amount of training data required and hence
reducing the training time.

5.2. NEW FEATURES 29

5.2.3 Training Data

When using the Rasa framework, the training data is split into NLU (e.g. intents, entities,
etc.) and conversational training data (e.g. rules, stories). To improve SecBot in general,
I needed to create additional training data for both subcategories.

Intents

During development I was also able to create new intents. With respect to forms, I created
a new intent called yet more info which is used to trigger the more info form. It contains
several training examples of how a user could ask to add more symptoms to the ones
already submitted or simply describe the problem in more detail. For the symptom form,
on the other hand, there already existed suitable intents to invoke the form. However, I was
able to leverage a new functionality which combines multiple user intentions into a single
one. With this in mind, I defined two new so-called multi-intents greet+attack notification
and greet+problem desc, which now are also able to trigger the symptom form. These two
multi-intents combine the greet intent with the attack notification or problem desc intent
and are intended to make the conversation more natural. They are used when the user
greets and starts complaining within a sentence.

Another intent I have created is the explain Intent. This intent is recognized when a user
becomes suspicious of SecBot’s request for some specific information during an active
form. For instance, during a form action, if the user wants to know why some information
is needed, then the chatbot will respond accordingly before proceeding with requesting
the required data. For the case when the user does not want to provide this information
or is simply not able to provide this kind of information, the user should then be able to
abort the form action. For this purpose, I have defined a stop intent that takes care of
such situations in both presented forms.

With respect to the attack support feature, there have been seven new intents defined. The
first one, the request attack information intent, is classified when a user wants to know
what a particular attack is respectively how it works. Such questions may arise when
SecBot has been successful in identifying an occurring attack and the user knows nothing
about that attack. The other use case is that a user might also be talking to SecBot for
educational reasons and is interested in knowing the characteristics of a particular attack.
Similarly, if the user still wants to know even more details about the specified attack and
is curious whether there exist certain types or subtypes, these questions then are defined
under the request further attack classification intent.
Another scenario is that the user may also want to compare certain attacks. This could
be the case if the user has very basic security knowledge and expected, for example, DNS
amplification to be identified as the current attack, but SecBot identifies it as a SYN
flood. In this case the user is interested in learning what the difference is between these
two attacks. Or, for instance, if the user previously asked about other subtypes of malware
and the explanations for, say, worms and viruses sound too similar. Such cases require
further clarifications in the form of differences.
In addition to the aforementioned intentions, the attack support feature also offers a whole

30 CHAPTER 5. APPROACH AND REFINEMENT

lot more information. For example, there may be the case that the user asks about the
potential symptoms of an attack out of curiosity, or this information is requested to see
what other symptoms the user may have possibly missed out on his/her device. To cover
these kinds of concerns, I have created the request attack symptoms intent. Another sce-
nario that can occur is that the user wants to know what kind of challenges the attack
poses. As such, this concern has been addressed with the request attack challenges intent.
Consequently, once a general overview over the attack is obtained, further non-technical
questions could be asked. One such question revolves around the impact that a particular
attack may cause to businesses. These kind of questions are especially important for users
who own or are responsible for the IT security of a business and are addressed by the
request attack impacts intent.
Finally, the last intent that comes with the attack support feature involves possible pro-
tection measures and is defined as request countermeasures intent. More specifically, if
this intent is classified, the user then asks for general protection measures that are used
to combat the particular attack.

Moreover, besides dealing with symptoms and question such as those covered in the attack
support feature, SecBot should also be able to conduct small talks. This behaviour could
be achieved by creating two new retrieval intents. These are special types of intents
that consist of multiple smaller subintents. In this sense, I created a chitchat retrieval
intent that contains several subintents, such as ask isbot, where the user asks SecBot if
it is indeed a chatbot, or ask howbuilt, where the user wants to know how SecBot was
developed. Further, a second retrieval intent, an out of scope intent, was added to the
NLU data to handle any other out-of-context messages that have not been covered within
the chitchat intent. However, small talks are intentionally very limited, as the vision
is not to make SecBot a chatter bot, but a conversational agent that offers support for
cybersecurity issues.
Lastly, I have also included an intent called nlu fallback. This intent is a predefined intent
that needs to be explicitly specified, but no further conversation examples are needed for
it. It works together as part of a component and a policy, which will be discussed in more
detail later.

Rules

As mentioned in previous sections, Rasa 2.0 came with various new or improved features.
Rules, as a result of combining multiple rule-based policies within a new general Rule-
Policy, constitute one such new feature which is now part of the conversation training
data. They are basically short pieces of conversation that follow always the same struc-
ture. They cannot be generalized like stories, but they come in handy when it comes to
implementing predictable conversational dialogues with fixed responses.

For SecBot, the use of rules brings more robustness into the dialogue managment model,
since this rule-based approach is a complement to the machine-learning one. With this in
mind, I have specified rules for the following occasions:

• Forms: The process of activating as well as deactivating and submitting a form
always follows the same structure. For this reason I have implemented respective

5.2. NEW FEATURES 31

rules. Furthermore, I have also specified rules to handle unexpected input, such as
out-of-context or chitchat intentions during form actions, thereby covering unhappy
paths. Note that the intents addressed by the action support feature are also treated
as unexpected input when they occur during form actions.

• Fallback handling: In the case of user messages with low NLU confidence, a
fallback rule responds.

• One-turn interactions: Predefined responses to user utterances where either the
context is not relevant, such as chitchat or out-of-scope intents, or where certain
intents require particular custom actions to be executed, as it is the case with
intents of the attack support feature.

Now, the fact that we are able to explicitly specify rules reinforces the statement in
Chapter 4, where we defined SecBot as a hybrid model that leverages the best features of
both rule-based and machine learning-based approaches.

Stories

To train SecBot’s dialogue management model more adequately, I also had to create more
stories for the conversational training data. Altough I have introduced rules, they cannot
be generalized. In this sense, explicit conversation examples covering various conversation
flows had to be provided so that SecBot could learn the association between intents and
bot responses and thus also generalize from them. With this in mind, I have first covered
all conversation flow where the user submits all requested information, i.e. happy paths,
for both the symptom form and the more info form. Up next, I wrote stories for unhappy
paths during active forms. These included stories where requested information was missing
or unexpected messages including chitchat, out-of-scope, or questions addressed by the
attack support feature were given as input.
Moreover, I have also created additional stories for the unhappy path during the form
actions that cover contextual interjections, i.e. unexpected input whose response depends
on the current context. These kind of conversation samples basically train the assistant
on how to react to the previously introduced explain intent.
Finally, once a certain amount of features was implemented, I started to create stories
for the unhappy paths using Rasa’s interactive mode. This gave me the opportunity
to create more sophisticated conversation examples and also ensured that all necessary
slots were set, which was not as trivial as it sounds with the increasing complexity of the
conversation samples.

5.2.4 Actions

The first type of action I want to discuss are custom actions. With regard to the symp-
tom description feature I implemented five new custom actions. First, in order to obtain
the correct values, the user input must somehow be checked for validity during the form

32 CHAPTER 5. APPROACH AND REFINEMENT

actions. To do this, I have created two custom actions, ValidateSymptomForm and Vali-
dateMoreInfoForm, which are responsible for validating all the extracted slot values from
the corresponding user messages during their respective form actions. Once a form has
been completed it must then be submitted to be able to process the information. For this
reason I have defined the ActionSubmitSymptomForm and ActionSubmitMoreInfoForm
actions that take the responsibility for submitting the respective forms after all required
information has been gathered. For the event that a form is interrupted, the already
extracted slots need to be reset. Otherwise, when entering the form in a later stage,
there will be an information conflict as the already extracted slots will not be refilled.
For this reason, I have implemented the ActionResetSlotsAfterFormInterruption action,
which takes care of resetting the corresponding slots.
With respect to the attack support feature, for each of the intents discussed, a corre-
sponding custom action is implemented.

The second type of actions denote bot responses. For all the newly created training data,
several new responses with different variations have been implemented, allowing SecBot to
react appropriately in any situation. A complete list of responses is available as Appendix
C. The last type of actions are form actions. Since forms are implemented as a completely
new feature in SecBot, it has already been discussed previously in Subchapter 5.2.2.

5.2.5 Slots

In order to make SecBot more context-aware, various new slots needed to be defined.
Table 5.4 outlines the new created slots with a short description of what values they
store.

Table 5.4: New Slots

Slot Description

identified attack
Stores the last attack that was identified by
SecBot

symptoms 1
Stores the symptoms submitted during the
symptom form

symptoms 2
Stores additional symptoms submitted during
the symptom form

symptoms target
Stores the target specified during the symp-
tom form

more info
Stores the additional submitted symptoms dur-
ing the more info form after the attack detec-
tion failed the first time.

new target
Stores the new target during the
more info form.

requested slot
Stores all slots of symptom form and
more info form.

attack information
Stores the last attack(s) for which a description
was provided.

5.3. REFINEMENTS 33

further attack classification
Stores the last attack(s) for which further clas-
sification was provided.

compared attacks
Stores the last attacks that were compared with
each other.

attack challenges
Stores the last attack(s) for which challenges
were provided.

attack impacts
Stores the last attack(s) for which impacts were
provided.

attack symptoms
Stores the last attack(s) for which potential
symptoms were provided.

attack countermeasures
Stores the last attack(s) for which common pro-
tection measures were provided.

5.3 Refinements

5.3.1 Training Improvements

The first refinement step regarding the configurations of SecBot already started with the
migration to Rasa’s release candidate. For that, I removed three policies (MappingPolicy,
FormPolicy and KerasPolicy) which have all become deprecated. The MappingPolicy
and FormPolicy were redundant anyway, since their functionality (e.g. forms) were not
implemented. Then, as a solution to the deprecated KerasPolicy, I added the TEDPolicy
within the policies section instead. It is a machine learning policy that is used to generalize
from the training stories such that SecBot is also able to cover unforeseen conversation
paths like off topic messages.
In order to make use of forms and to specify rules, the RulePolicy was added to the policy
section. It combines the functionality of several rule-based policies into one policy, thus
making the configuration of the policies section more approachable.

Furthermore, I have also made some changes to the component pipeline which is responsi-
ble for turning user messages in form of unstructured data into structured data so that the
chatbot is able to understand the user’s intentions. To facilitate better intent classification
and entity extraction, I have now added two new featurizers, namely the LexicalSyntac-
ticFeaturizer and the CountVectorsFeaturizer respectively.
Moreover, from the initial pipeline configuration I replaced two components, the CRFEn-
tityExtractor and the SKlearnIntentClassifier, with the so called DIETClassfier, which
combines Intent classification and Entity extraction within one component. The reason
for sticking to the DIETClassifier is that, besides leveraging multi-intent classification,
it offers great flexibility due to its highly customizable nature. You can also use it only
for intent classification or just for entity extraction. Furthermore, there is the possibility
to include different pre-trained word embeddings or simply stick to your trainings data.

34 CHAPTER 5. APPROACH AND REFINEMENT

To fine-tune the training, the DIETClassifier allows even more tweaking of settings with
the various hyperparameters that can be set, reinforcing the component’s customizability.
Based on state-of-the-art architecture, models can be trained up to six times faster with
DIETClassifier, as described in [39].
Moreover, I have added two more ResponseSelector components that are responsible to
correctly reply with predefined responses if a retrieval intent is recognized. Also for the
previous mentioned fallback handling, the corresponding component, the FallbackClassi-
fier, had to be included into the component pipeline.

With all these refinements made, I was able to further fine-tune SecBot’s configuration by
setting and adjusting some of the parameters that the policies and components provide.
As this information becomes more technical, these settings will be covered in more detail
in Chapter 6.

5.3.2 Training Data

Here again, the refinement of the training data already started when I was migrating
SecBot to Rasa’s newest release. What changed was the data format from markdown to
yaml type for both the NLU and the conversation training data. Therefore, the training
data had to be adjusted accordingly.

Furthermore, the newly created intents discussed in Subchapter 5.2.3 provide SecBot with
a whole set of additional training examples which are used to accurately train the dialogue
management model. In addition, the investigation on cybersecurity threats in Subchapter
2.1, along with the additional information from the attack support feature (cf. Subchapter
5.2.1), allowed me to adequately refine the actual knowledge base. To this end, I added
more examples for several intents, with the problem desc intent benefiting the most, as
this intent is crucial to the symptom description scenario.
What’s more, the refinement of the knowledge base also included the refinement of so-
called lookup tables, which serve as an aid to accurately identifying the user intentions
by creating patterns using case-insensitive regular expressions.

With regard to the existing stories, the refinement was a continuous process throughout
SecBot’s development. After the introduction of the form feature, various stories had to
be rewritten and therefore adjusted to the new functionality. Once writing stories got
more complex, mainly due to several newly introduced slots, I often switched into Rasa’s
interactive mode to rewrite an existing conversation example.

5.3.3 Custom Actions

In terms of actions, there was not much to refine. Since the attack information is a com-
pletely new functionality added to SecBot, no other existing custom actions were affected,
except for the ActionIdAttack, which is responsible for identifying the attack based on the
given symptoms. There I only made a small change so that the algorithm sets the new
identified attack based on its result.

5.3. REFINEMENTS 35

In the case of the symptom description scenario, the new form feature including the cor-
responding custom actions took over the responsibility for collecting symptoms from the
ActionSymptoms action. I therefore removed this action completely. Another action called
ActionPardon was also removed, since it didn’t contribute to any functionality discussed
in this report. It was originally used for understanding the functionality of certain other
classes such as Tracker or Dispatcher by printing out the outcome of important methods.

36 CHAPTER 5. APPROACH AND REFINEMENT

Chapter 6

Implementation

Complementary to Chapter 5, this chapter provides a more technical overview of the
implemented and refined features. First, Chapter 6.1 takes a closer look at SecBot’s
configuration before discussing the implementation of the symptom description feature in
Chapter 6.2 and the attack support feature in Chapter 6.3 in more detail. Then, Chapter
6.4 shows the process of how SecBot has been integrated into the popular messaging
application Telegram.

As for the technology stack used, SecBot is build entirely with Rasa’s open source machine
learning framework. Since it is a newer framework, new versions are constantly being
released to fix bugs that have occurred or to generally enhance the framework itself. For
this work, Rasa version 2.2.2 and Rasa SDK 2.2.0 are currently used.
Rasa’s action server, which is responsible to execute custom actions, is based on the
Python programming language. During development, Python version 3.7.5 has been used
throughout.

6.1 Configuration

The configuration of SecBot is defined in the configuration file config.yml and consists of
two main parts: the component pipeline and the policies section.

The components are responsible to convert the unstructured user input into a structured
form consisting of intents and entities, thus enable the assistant to correctly capture the
user’s intention. This process happens sequentially, i.e. starting from the top component
and ending with the last one, which at the same time means that the order matters.
Thus, every component, except the first one, gets as an input the output of the previous
component.

Listing 6.1 illustrates how the NLU pipeline is structured. On top, SpacyNLP, an open-
source NLP library, is initialized in order to use spaCy components.

37

38 CHAPTER 6. IMPLEMENTATION

1 # https :// rasa.com/docs/rasa/nlu/components/

2 language: "en"

3

4 # Configuration for Rasa NLU.

5 pipeline:

6 - name: "SpacyNLP"

7 - name: "SpacyTokenizer"

8 intent_tokenization_flag: True

9 intent_split_symbol: "+"

10 - name: "SpacyFeaturizer"

11 - name: "RegexFeaturizer"

12 - name: LexicalSyntacticFeaturizer

13 - name: CountVectorsFeaturizer

14 - name: CountVectorsFeaturizer

15 analyzer: "char_wb"

16 min_ngram: 1

17 max_ngram: 4

18 - name: "DIETClassifier"

19 epochs: 400

20 use_masked_language_model: True

21 - name: "EntitySynonymMapper"

22 - name: "ResponseSelector"

23 epochs: 70

24 retrieval_intent: chitchat

25 - name: "ResponseSelector"

26 epochs: 70

27 retrieval_intent: out_of_scope

28 - name: "FallbackClassifier"

29 threshold: 0.3

Listing 6.1: Configuration - Component Pipeline

SpacyTokenizer takes the initial user message and splits it into tokens. SpacyFeaturizer,
on the other hand, creates features, i.e. vector representation of the user message, which
then are used for classifying intent and responses, as well as extracting entities. The
RegexFeaturizer also provides features for the same purposes, but in the case of SecBot,
this featurizer is mainly used to leverage lookup tables that provide help for correctly
extracting entities that have many possible values.
To enable multi-intent classification, I have had to set the corresponding hyperparameters
within the SpacyTokenizer. More specifically, I set the intent tokenization flag to True
and specified the delimiter string for the intent split symbol parameter. An example of a
multi-intent illustrates Listing 6.6 in Chapter 6.2.
As the name indicates, the LexicalSyntacticFeaturizer on line 12 provides lexical as well as
syntactic features to support the process of entity extraction. This component is followed
by two instances of CountVectorsFeaturizer, which are typically used to provide features
for classifying intents and selecting responses by creating bag-of-words representations of
user message, intent, and response. The first instance on line 13 is therefore responsible
for counting whole words, whereas the subsequent instance is configured to look at sub-
word sequences of characters, also known as character n-grams. For this purpose, the
parameter analyzer must be set accordingly and the lower and upper limits of the n-gram
must be configured as with the parameters in lines 16 and 17, respectively.

6.1. CONFIGURATION 39

Not all intent classifier and entity extractors are designed to handle multi-intent classi-
fication, but the DIETClassifier I introduced in Chapter 5.3 offers this capability. To
fine-tune the training, this component offers various hyperparameters that can be spec-
ified. In Listing 6.1 you can see that the epochs parameter on line 19 is set to 400 and
the use masked language model to True. Epochs denote the amount of times the train-
ing goes through all of your data. 300 is the default value and depending on the size of
your training data this parameter needs to be adjusted. Otherwise, your model might
either generalize too much, or in the other case, it learns the data so well that it starts to
memorize rather than generalize. Use masked language model, on the other hand, needs
to be set to True if your assistant needs to acquire additional domain knowledge through
your data. This is the case, for instance, if you expect long or complex input messages,
the domain language contains slight variations, or the number of intents grows. With
respect to SecBot, this parameter must be set to True especially for utterances which
do not contain any entities. An example of this is the following: Depending on whether
the user asks ”What impacts does this attack have?” or ”What subtypes does this attack
have?”, the assistant classifies the message either as a request attack impacts intent or a
request further attack classification intent.

The EntitySynonymMapper component maps equivalent entity values, such as distributed
denial-of-service and DDoS, to the same value. For the two ResponseSelector components,
the name of the retrieval intent must be specified and optionally the number of epochs. If
the results of the intent classification are ambiguous, then the FallbackClassifier classifies
the message with the nlu fallback intent. This happens when the intent classifier could
not categorize the intent with a probability greater than or equal to the threshold which
is currently set to 0.3.

Listing 6.2, on the other hand, illustrates the policies section which is responsible for
predicting the next actions. In the case of multiple policies predicting the next action
with the same probability, the default policy priority ranking is then taken into account.

The MemoizationPolicy recalls all implemented stories and compares them to the actual
conversation. It either predicts the next action with a probability of 1 (meaning there
exist a story matching the current conversation) or in the other case, it predicts None
with a confidence of 0.0.
The TEDPolicy, however, is used for generalization purposes. In this sense, it takes
into account multiple factors, such as user input, previous actions or bot utterances, as
well as slots and active forms, before making predictions about the next action. For
that purpose, the hyperparameter max history can be set, which determines how much
dialogue history will be considered. The default is considering the complete history. The
epochs parameter can also be set here. In this case the default value is set to 1, but must
be adjusted depending on the model to learn appropriately. With regard to SecBot, this
parameter is set to 80.

1 # Configuration for Rasa Core.

2 # https :// rasa.com/docs/rasa/core/policies/

3 policies:

4 - name: MemoizationPolicy

5 - name: TEDPolicy

6 # max_history: 10

7 epochs: 80

40 CHAPTER 6. IMPLEMENTATION

8 - name: RulePolicy

9 core_fallback_threshold: 0.3

10 core_fallback_action_name: "action_default_fallback"

11 enable_fallback_prediction: True

Listing 6.2: Configuration - Policies

The RulesPolicy combines all rule-based policies (for rules, forms, fallback, and so on)
into one component. With respect to the fallback behaviour, three more parameters need
to be set. The enable fallback prediction flag must be set to True. This then allows
the core fallback threshold parameter to be set to a certain confidence score. Each time
the machine learning policies are unable to predict an action with a probability greater
than the core fallback threshold, the action specified by the core fallback action name
parameter, in this case the action default fallback, is then executed.

6.2 Symptom Description Feature

Chapter 5 provided a high-level overview of the new and improved features that should,
among others, bring some robustness to the process of describing the symptoms and
problems a user is experiencing. This chapter, however, provides a more in-depth and
technical view of the implementation of these features.

For starters, we will take a closer look at the brand new forms. Forms are created within
the domain.yml file by adding the form under the forms section. Listing 6.3 shows the
implementation of the symptom form.

1 forms:

2 symptom_form:

3 symptoms_1:

4 - entity: problem

5 type: from_entity

6 - intent: deny

7 type: from_intent

8 value: None

9 symptoms_2:

10 - entity: problem

11 type: from_entity

12 - intent: deny

13 type: from_intent

14 value: None

15 symptoms_target:

16 - entity: target

17 type: from_entity

18 - intent: deny

19 type: from_intent

20 value: None

21

Listing 6.3: Symptom Form

22 more_info_form:

23 more_info:

24 - entity: problem

25 type: from_entity

26 - intent: deny

27 type: from_intent

28 value: None

29 new_target:

30 - entity: target

31 type: from_entity

32 - intent: deny

33 type: from_intent

34 value: None

35

Listing 6.4: MoreInfo Form

6.2. SYMPTOM DESCRIPTION FEATURE 41

As on line 2, the name of the form must first be defined. This is at the same time
the name of the action used in stories and rules. Below the form name, the respective
slots to be filled, in this case symptoms 1, symptoms 2 and symptoms target, need to
be defined. These slots were also previously created in the domain.yml file, but under
the slots section and are of type list. It is also necessary to specify for each of the slots
how to assign the correct value to it. The requested slots of the symptom form use two
variations of slot mappings: from entity and from intent. The first fills the requested slot
based on the extracted entities. More specifically, if the user message contains a problem
entity, then that entity is automatically mapped to the slot. Otherwise, if the intent of
the message is deny, then the slot value is set to None. It is worth noting that if an target
entity is also extracted while the information for the symptoms 1 slot is requested, then
the symptoms target slot is also filled directly. Consequently, the user won’t be asked to
explicitly specify the target again. Analogously, Listing 6.4 presents the corresponding
implementation for the more info form.

Form activation happens either through rules or through stories. Since the symptom form
should be always activated, whenever the user intends to provide a symptom respectively
problem description, activating the form is handled through the rule illustrated in Listing
6.5.

1 - rule: start symptom form

2 steps:

3 - or:

4 - intent: problem_desc

5 - intent: attack_notification

6 - intent: greet+attack_notification

7 - intent: greet+problem_desc

8 - action: symptom_form

9 - active_loop: symptom_form

Listing 6.5: Rule - Activate Symptom Form

In order to be able to create rules, the RulesPolicy must be specified in config.yml. More-
over, I also had to create a new rules.yml file that is persisted in the same directory as the
nlu.yml and stories.yml training data. All new rules can now be defined below the rules
keyword located at the beginning of the created file. Listing 6.5 shows how to create such
a rule. At the top, you first describe the name of the rule. Then the corresponding steps
are defined one after the other.
With respect to the activation of the symptom form, the or-statement describes that
whenever SecBot classifies an intent as one of those listed beneath the or-statement, the
symptom form action is triggered. The last step in line 9 indicates that the form should
be active after the aforementioned form action is executed.

Indeed, the intents greet+attack notification and greet+problem desc are multi-intents
that were not available before. An example of the latter is shown below in Listing 6.6.
It combines the greet with the problem desc intent and allows now SecBot to understand
messages that include more than one intent, which also makes the conversation more
natural. Generally comparing this example with Figure 4.1 in Chapter 4, you can see
that the way how intents are created has changed. Specifying the name of the intent

42 CHAPTER 6. IMPLEMENTATION

after the intent keyword on the first line and defining the examples below the examples
keyword now significantly improves the readability for the developer.

1 - intent: greet+problem_desc

2 examples: |

3 - Hello. My [files](target) are [encrypted](problem).

4 - Hi my [server](target) is [overloaded](problem).

5 - hey SecBot! I [cannot access](problem) my [database](target)

6 - Yo, there is a message asking [bitcoins](cryptocurrency)

7 - Hello , I receive a message to pay [ethereum](cryptocurrency)

8 - Good morning. My [server](target) is receiving [a lot of

requests](problem).

Listing 6.6: Multi-Intent - Greet + Problem Description

Once the form has been activated the user will be prompted to deliver the requested
information. This is done in the following way: The assistant looks out for responses
which are defined within the domain.yml file under the responses section. There, for
each required slot a response in the format of utter ask <slot name> is defined. So, for
instance, the response for the required slot symptoms 1 is defined as utter ask symptoms 1
with SecBot then uttering ”Can you describe what the problem is?” once the form is
activated.

After the user entered their message, the extracted slots have to be validated. Rasa
validates by default only if any slot has been filled after a slot has been requested. That
is why I have created a custom action to validate the extracted slots. Custom actions
in general are defined within the action.py file. However, the return value of the name
method must be added into the domain file under the actions section. Otherwise, the
assistant won’t know that these actions exist and raise errors if they are used in specific
rules or stories. Nevertheless, this custom action is only executed if the extracted entity
is of type problem or the user message is classified as a deny intent as specified in Listing
6.3. For all the other user inputs that didn’t fill the requested slot the form action will
be rejected, thus, an error is raised.

1 class ValidateSymptomForm(FormValidationAction):

2

3 def name(self) -> Text:

4 return "validate_symptom_form"

5

6 def validate_symptoms_1(

7 self ,

8 slot_value: List ,

9 dispatcher: CollectingDispatcher ,

10 tracker: Tracker ,

11 domain: Dict[Text , Any],

12):

13

14 # print(" VALIDATING SYMPTOMS_1 SLOT")

15 if slot_value == ’None’:

16 dispatcher.utter_message(template="utter_explain_symptoms_1"

)

17 dispatcher.utter_message(template="utter_stop_form")

18 return {"symptoms_1": None}

19 else:

6.2. SYMPTOM DESCRIPTION FEATURE 43

20 # print(" SUCCESSFULL VALIDATION ")

21 return {"symptoms_1": slot_value}

22

23 def validate_symptoms_2 (...):

24 [...]

25

26 def validate_symptoms_target (...):

27 [...]

Listing 6.7: Custom action - Validate Symptom Form

In the other case, if the user does not want to or is unable to describe the problem
or identified symptoms, SecBot will first explain why it is important to provide those
information using the utter explain symptoms 1 response action, as shown in Listing 6.7
on line 16, followed by the utter stop form action which basically informs the user how to
proceed when no symptoms can be provided or the user no longer wants the form to be
executed. In this sense, the required slot is set to None. This means that it has not been
filled correctly. As a consequence, SecBot repeats the question. Otherwise, the extracted
information are assigned to the symptoms 1 slot and the assistant proceeds with querying
the other required information.

When all required slots are filled, the form is automatically deactivated and listens to
the user for the next user input by default. In the case of SecBot, a submit method is
triggered after the form is deactivated. So, since this behavior is to be set as default,
this is also achieved by using rules. Listing 6.8 shows how such a rule is designed. Since
the form needs to be active in order to deactivate it, the active loop parameter must be
set under the condition keyword to the form name, in this case to symptom form, to
indicate that the current form is activated. To disable the form the symptom form action
is executed again, before setting the active loop to null. And since we want to submit
the form subsequently, the custom action action submit symptom form is triggered as the
last action in this rule. Moreover, an additional flag called wait for user input had to be
set to false. By default, each rule has this flag set to true, which implicitly defaults to
action listen as the next action, meaning that the assistant will wait for the next user
input. However, this conflicted with several other stories that performed a different action
after the submit method.

1 - rule: submit symptom form

2 condition:

3 - active_loop: symptom_form

4 steps:

5 - action: symptom_form

6 - active_loop: null

7 - action: action_submit_symptom_form

8 # Every rule implicitly includes a prediction for ‘action_listen ‘ as

last step.

9 # This means that Rasa Open Source will wait for the next user message

10 wait_for_user_input: false

Listing 6.8: Rule - Submit Symptom Form

The action submit symptom form is a custom action which serves for two purposes. First,
the symptom form disables itself after it has filled all the required slots. However, the filled

44 CHAPTER 6. IMPLEMENTATION

slots are not reset to None. As a direct consequence, even tough the form is reactivated
through the appropriate intents, the user will not be able to enter any messages since
the required slots are, in principle, already filled. Therefore, the activation is directly
followed by the deactivation of the symptom form. Actually, this would still satisfy our
requirement to offer the user the possibility to provide the information in a pleasant and
robust way. Though, this would introduce the inconvenience of having to restart the
server every time the user encounters a new problem. This issue is therefore addressed
within this custom action. More specifically, at the bottom of Listing 6.9 (line 15 and 20),
you can see that every time the form is deactivated and thus also submitted, the required
slots are automatically reset to None so that the user is no longer forced to permanently
restart the server. Instead, the user can now restart the form as many times as they want
during the conversation.

The second purpose is somewhat intertwined with the attack identification process, which
is usually outside the scope of this work. Though, the custom action that is responsible
for the attack identification extracts the new symptoms provided from the problem slot.
At this point, it is important to mention that Rasa has an auto-fill functionality for slots
that are named exactly the same as an entity. And this is exactly the case for the problem
slot. So even if we provide the necessary information to fill the symptoms 1 slot, for
example, the problem slot will automatically be assigned the same value. If you then
provide the information for the symptoms 2 slot, the problem slot will be overriden with
the newly provided entity value. Moreover, it is also not possible to retrieve the required
slots of the form as they are now reset after the form is submitted, and since it is also not
possible to append values to a slot, even if it is of type list, we have to manually update
it through this custom action. Otherwise we would be collecting the information during
the form action for nothing. For this reason, as shown in Listing 6.9, we collect all the
provided symptoms from the required slots into one symptoms list, which is initialized on
line 7, and set the problem slot at end to that list. I’ve also included a checkpoint to see
whether the form worked properly. If the symptoms list is empty, then only the required
slots are reset.

1 class ActionSubmitSymptomForm(Action):

2 def name(self):

3 [...]

4

5 def run(self ,...):

6

7 symptoms = []

8 symptoms_1 = tracker.get_slot("symptoms_1")

9 symptoms_2 = tracker.get_slot("symptoms_2")

10 symptoms_target = tracker.get_slot("symptoms_target")

11

12 [...]

13

14 if len(symptoms) != 0:

15 return [SlotSet("problem", symptoms), SlotSet("target",

16 symptoms_target), SlotSet("symptoms_1", None),

17 SlotSet("symptoms_2", None),

18 SlotSet("symptoms_target", None)]

19 else:

20 return [SlotSet("symptoms_1", None), SlotSet("symptoms_2",

6.2. SYMPTOM DESCRIPTION FEATURE 45

21 None), SlotSet("symptoms_target", None)]

Listing 6.9: Custom action - Submit Symptom Form

As mentioned earlier, user may deviate from the happy path for any reason. They may
want to ask certain questions, stop the form action or they just want to do some chitchat
to see to what extent the assistant can handle unhappy paths (cf. Subchapter 5.2.3). This
in turn means that SecBot must be prepared for such unexpected inputs. To make SecBot
more resilient in this regard, I made use of both rules and stories. In the case of simple
chitchat or completely out of scope messages where the response should always be the
same irrespective of the context of the conversation, I leveraged the rules functionality.
For that, I first have to assure that the form is active as shown on line 3 in Listing 6.10.
Then, when classifying a chitchat intent, SecBot automatically responds to that chitchat
message before executing the form action again (line 7) and setting the active loop to the
respective form name.

1 - rule: return to symptom form after chitchat intent

2 condition:

3 - active_loop: symptom_form

4 steps:

5 - intent: chitchat

6 - action: utter_chitchat

7 - action: symptom_form

8 - active_loop: symptom_form

Listing 6.10: Rule - Handle unexpected Chitchat input

In Chapter 5, the chitchat and out of scope intent were introduced as retrieval intents.
These special types of intents are divided into subintents and specified in the nlu.yml file
like all other intents. They can be distinguished from usual intents by their format, which
is as follows: retrieval intent/sub intent. For instance, an actual subintent of chitchat
constitutes ask isbot which includes examples like ”Are you really a bot?”. In the nlu.yml
file, the retrieval intent is then specified as chitchat/ask isbot. Moreover, the corresponding
response action is defined as utter chitchat/ask isbot under the responses section which
is located in the domain.yml file. The advantage of such retrieval intents is that even
though each subintent is implemented as an individual intent, they are all handled in the
same way during the conversation. This means that, as in line 5 in Listing 6.10, only the
retrieval intent, in this case chitchat, needs to be specified. The RulesPolicy along with
the ResponseSelector then take over and respond with the appropriate answer depending
on what question is asked. The rule of the out of scope retrieval intent is implemented
analogously.

In the case of contextual interjections, i.e. unexpected input whose response depends on
the current context, I utilized stories. More specifically, I focused on questions where
the user is curious about why a particular piece of information is needed. In Rasa, a
requested slot slot of type text is implicitly added to the domain and is only considered
when a form is active. To be able to answer such contextual questions during a form action,
the previously mentioned slot must be explicitly defined in the domain.yml file. Further,
its type must be set to categorical and all values that this slot can take must be specified
as well. For our purpose, we include all required slots from both the symptom form and

46 CHAPTER 6. IMPLEMENTATION

the more info form. Moreover, in order to create such stories an explain intent has been
added to the NLU training data and for each of these slots given as values, an explanation
response has been introduced in the corresponding section of the domain.yml file.
In Rasa, stories are created inside the stories.yml file. As shown on line 1 in Listing
6.11, the name of the story is initialized before a sample conversation under the steps
keyword is given. These sample conversations are represented through users’ messages
classified in intents and the assistant’s actions, which include both custom actions and
defined responses. It must also be pointed out that during training the action server
is not accessed. This means that the assistant doesn’t know what events are returned
during training. Therefore, events such as setting a slot or activating or deactivating a
form must be explicitly written inside the stories. For instance, the slot was set event
in line 6 in Listing 6.11 shows that the requested slot slot is automatically set to the
symptoms 1 slot after the form has been activated. If now the user asks the bot why
the information is needed, in this case why the user should state symptoms or describe
the problem (represented on line 8), SecBot first retrieves the requested slot to see for
which slot the explanation is asked before responding with the utter explain symptoms 1
action. Then, with the action that is executed on line 10, the assistant returns back to
the form and asks again for the necessary information. Analogously, for each value of the
requested slot slot such a story has been created, so that SecBot is now able to always
give the appropriate explanation during a form action.

1 - story: symptoms_1 interjection

2 steps:

3 - intent: attack_notification

4 - action: symptom_form

5 - active_loop: symptom_form

6 - slot_was_set:

7 - requested_slot: symptoms_1

8 - intent: explain

9 - action: utter_explain_symptoms_1

10 - action: symptom_form

Listing 6.11: Story - Contextual Interjection

For the case where the user does not want to provide any information or just want to
stop the form, a few more stories have been created. During the form action, if a message
is classified as a stop intent SecBot then responds with the utter ask continue action.
It basically asks whether the form action should be continued or not. If again a stop
or a deny intent is classified, a default action called action deactivate loop is executed
and the active loop is set to null. After that, the custom action ActionResetSlotsAfter-
FormInterruption is directly executed for the reasons discussed in Subchapter 5.2.4, thus
resetting all slots after the form has been deactivated and then confirming with the ut-
ter successfully stopped form response to the user that the form has been deactivated
successfully. The utter ask continue action serves as an assurance to SecBot to verify
that the stop intent was not incorrectly predicted by the dialogue management model,
but was really the user’s intention. Because, in case of an incorrect prediction, the user
then can only affirm the continuation of the form action and proceed as usual. Note that
such an approach could not be implemented by rules and would trigger an error. The
confirmation step turns this part of the conversation into a multi-turn dialogue, which is
best represented by stories. Implementing it through rules is still only feasible if you omit

6.3. ATTACK SUPPORT FEATURE 47

the confirmation step and risk mistakenly terminating the form and thus also harming
the user experience.
Moreover, all the features including the various stories, rules, custom actions, etc. that
were presented in the listings are also implemented anologically for the more info form.

6.3 Attack Support Feature

As in Chapter 6.2, this chapter provides a more detailed and technical overview of the
implementation of the attack support feature and its characteristics.

At first glance, this feature might seem like a basic FAQ feature. In that sense, one would
strive for an implementation which relies heavily on retrieval intents. That being the
case, subintents for questions such as ”Are there any subtypes of DDoS attacks”, ”What
does a DDoS attack do?”, ”What are the impacts of DDoS attack”, etc. must be created
for each major attack, along with the corresponding responses. Then, for example, for
each subtype of the major attack, the same questions need to be represented again by
even more subintents and responses. You can clearly see that such an approach requires
a sheer amount of subintents and responses to be created. If there were only two major
cyberthreats, say DDoS and Malware, this approach would easily feasible. But that’s not
the case. There exist thousands of cyberattacks, and even if you wanted to cover only a
fraction of them, this approach would blow up the number of training data. Consequently,
training the dialogue management model would take substantially longer. Moreover, this
approach would only work for one-turn interactions. Follow-up questions, such as ”Does
this attack have any subtypes”, where the message include no entities and thus heavily
rely on the current context would not work at all. For these reasons, I did not consider the
basic FAQ approach, but instead pursued a more context-aware approach whose solution
can be easily extended to include additional cyberthreats.

To start with, Listing 6.12 shows how the new request attack information intent, which
was described in Chapter 5, is implemented. As you can see from line 8 downwards,
the examples each contain the requested attack, therefore making it crystal clear for
which attack the additional information must be provided. On the other hand, SecBot
is also trained to correctly classify such messages that do not contain directly any in-
formation in the form of entities about the attack. This is done by including examples
such as the ones from line 3 to 6. The other remaining intents of this feature, such
as request further attack classification or request attack comparison, are defined in the
same way. Since the parameter use masked language model of the DIETClassifier is set
to True, SecBot is able to distinguish between the subtle differences of the individual
intents.

1 - intent: request_attack_information

2 examples: |

3 - Alright , can you elaborate what this attack does?

4 - what does this attack do?

5 - Can you explain what this attack does

6 - How does it work?

7 [...]

8 - What is a [Phishing scam](attack_name)?

48 CHAPTER 6. IMPLEMENTATION

9 - Can you explain what a [dDOS](attack_name) attack is?

10 - Explain [DNS amplification](attack_type) attacks

11 - How does [ransomware](attack_name) work?

12 [...]

Listing 6.12: Intent - Request Attack Information

Moreover, for each of these intents, a rule is created which directly executes the cor-
responding custom action. So does, for instance, the request attack comparison intent
always invoke the action provide attack comparison action. I favored rules over stories to
handle the execution of those custom actions, as the same questions should always output
the same answers. And with rules, the probability of predicting the wrong action after
correctly classifying the intent is significantly reduced.

All custom actions of the attack support feature are similarly structured, but tailored to
their own purpose. Once such an action is executed it

1. retrieves all attacks that are supported by SecBot,

2. retrieves all attacks for which certain information is asked about,

3. checks whether the requested attacks are valid, i.e. supported,

4. outputs the requested information,

5. and stores the explained attack(s) in the corresponding slot.

As mentioned earlier, storing the information within the NLU training data would be be-
yond the numbers of intents and response actions. That’s why I came up with the idea of
outsourcing these data into a JSON file. Listing 6.13 illustrates the attack information.json
file, which is mainly characterized through nested dictionaries. The keys of the outer
dictionary constitute the supported major attacks which contain further dictionaries as
values. The first nested dictionary contains five more keys, where four of them (such as
lines 3, 17, 18, 19) provide specific information regarding the major attack. The fifth key
subtypes on line 4 has as its value another dictionary in which all subtypes of the major
attack are again listed as key - value pairs, with the value containing the specifications of
the subtype. The keys characteristics, scope and challenges thereby refer to the specific
tables in Chapter 2.1, where selected subtypes of the respective major attack were pre-
sented. The specific attacks key is an optional key for the subtypes of the major attacks.
If this key is available, then all the specific attacks of a subtype are briefly described
in there. For example, the subtype protocol-based DDoS would include SYN flood as a
specific attack.

1 {

2 "ddos": {

3 "characteristics ": "attack description",

4 "subtypes ": {

5 "subtype_1 ": {

6 "characteristics ": "...",

7 "scope": "...",

8 "challenges ": "...",

6.3. ATTACK SUPPORT FEATURE 49

9 "specific_attacks ": {

10 "specific_attack_1 ": "description"

11 }

12 },

13 "subtype_2 ": {...},

14 .

15 .

16 },

17 "challenges ": "...",

18 "impacts ": ["list including all effects DDoS may cause"],

19 "countermeasures ": ["list including general protection "]

20 },

21 "malware ": {...},

22 "phishing ": {...}

23 }

Listing 6.13: Attack Information JSON

Indeed, all attacks must adhere to the structure just presented above. These include the
major attacks malware and phishing, but also applies to newly introduced cyberattacks.
Otherwise, the designed custom actions would not work.

When it comes to retrieving all supported attacks the respective actions execute a private
method called get supported attacks(self) which returns a tuple including a list and a
dictionary. In a first step, the method loads the attack information.json file. Afterwards,
multiple loops through the nested dictionaries are started. During the iterations, all attack
names, including the major attacks, subtype attacks as well as the specific attacks, are
appended to a data structure of type list, which is then stored as the first element of the
returned tuple. This list is later used to check whether the extracted attack from the
user message is supported by SecBot or not. At the same time, a nested dictionary which
describes the relationships between the supported attacks is created. A major attack
then has as its value a dictionary with the following keys: children, grandchildren and
attack type. The children key would refer to a list that contains all subtypes of the major
attack, and the grandchildren key has as its value also a list which includes the specific
attacks of all its subtypes. Similarly, a subtype would have a parent key referring to the
major attack and a children key referring to its specific attacks. Lastly, each specific
attack has also a parent key that refers to the subtype it belongs as well as a grandparent
referring to the actual major attack. Obviously, the subtypes and specific types also
contain an attack type key. This key is then used to specify the current attack as either
major, subtype, or specific attack. This dictionary is then returned as the second element
of the tuple.
The reason for creating such a dictionary is to simplify the complexity of looping through
nested dictionaries when it comes to retrieving the required information. Instead of nested
loops, we can simply retrieve the required keys from the relationship dictionary and then
access the data directly. Listing 6.14 provides an illustrative example of a relationship
dictionary.

1 {

2 "ddos": {

3 "children ": [" application layer", "protocol based"],

4 "grandchildren ": ["http flood", "syn flood"],

50 CHAPTER 6. IMPLEMENTATION

5 "attack_type ": "major_attack"

6 },

7 "application layer": {

8 "parent ": "ddos",

9 "children ": ["http flood"],

10 "attack_type ": "subtype_attack"

11 },

12 "http flood": {

13 "grandparent ": "ddos",

14 "parent ": "application layer",

15 "attack_type ": "specific_attack"

16 },

17 [...]

18 }

Listing 6.14: Attack Relationship Dictionary

When it comes to retrieving all attacks for which certain information has been requested,
another private method is executed. When invoked, this method takes the current Tracker
instance as an argument. Tracker is a class which tracks the conversation between the
assistant and the user. It allows to access the stored information, i.e. the bot memory,
within the custom actions. In this sense, information about past events, such as which
slots have been set most recently or retrieving the last user message, can be easily obtained.
As a first step, this method retrieves all entities from the latest user message and stores
them as a list, as shown in Listing 6.15 on line 5. If that list is empty as indicated on line 7,
then the Tracker is used to find out which action was last executed. If the latest executed
action is one that belongs to the attack support feature, the referred attacks variable on
line 3 is then set to the corresponding slot that had been previously set by that specific
action and finally returned. Otherwise, the boolean value False will be returned.
If there is at least one element in the list on line 5, the algorithm checks whether these
entities are of type attack name or attack type. By fulfilling this requirement the entities
will be appended to the referred attacks list and then returned by the method. Otherwise,
the boolean value False is returned.

1 def __get_referred_attacks(self ,..., tracker: Tracker):

2

3 referred_attacks = []

4

5 latest_entities = tracker.latest_message.get("entities", [])

6

7 if len(latest_entities) == 0:

8 [...]

9 else:

10 [...]

11

12 return referred_attacks

Listing 6.15: Retrieve Requested Attacks

This is how this method is designed for almost all custom actions of this feature. In the
case of the action provide attack comparison action, the code sketch in Listing 6.15 must
be tailored more to the event of comparing attacks. In order to perform a comparison,

6.3. ATTACK SUPPORT FEATURE 51

there must be at least two attacks. In this sense, when retrieving the requested attacks, we
need to add another scenario for a user message that contains only one attack entity. Then,
for the first two cases where not enough attacks were provided for the comparison request,
backtracking the conversation stored in the Tracker must be performed accordingly before
returning either the referred attack list or the False value.
Therefore, the ability to trace back the conversation makes this feature more context
conscious and sets it above the basic FAQ.

Once all requested attacks are collected, the algorithm checks whether they are supported
by SecBot. This is done by checking if the attacks are included in the list that was returned
by the get supported attacks(self) method. If no attack, or less than two attacks in the
case of attack comparison requests, pass the check, SecBot then notifies the user that a
more specific message is required, as not enough supported attacks could be extracted.
Moreover, this notification is also displayed when the get referred attacks(...) method
returns False.

With the help of the previously described relationship dictionary, the requested informa-
tion is retrieved within the attack information.json file and finally displayed to the user.
In addition, each custom action that belongs to the attack support feature and that has
been successfully completed sets a slot, which relates to the action, to the successfully
processed attacks (cf. Subchapter 5.2.5). This step then facilitates the retrieval of the
required attacks when none could be extracted from the user message.

Another thing worth noting is that when it comes to displaying more than one piece of
information, such as when the user asks what symptoms indicate a particular attack, or
simply asks for the impacts of an attack, I have implemented two different variations,
which the administrator of SecBot then can choose which one to set as default. There-
fore, you can either, for instance, display each symptom one after another, or, for the
other variant implemented for the action provide attack impacts action, first display one
possible impact of the attack while noting that there are many more impacts to consider.
Subsequently, a link to a file containing all the impacts the requested attack could have
is displayed.

Moreover, as we have seen, the attack support feature provides the possibility to interact
with SecBot also only via one-turn interactions. For example, one could ask what a
DDoS attack is. The next question would then relate back to a topic covered by this
feature but would not depend on the current context, such as asking for the difference
between phishing and malware, and so on. Such scenarios introduce new entry points
for unexpected input during form actions which were previously explained in detail in
Subchapter 6.2. However, the implementation of unexpected input through the use of the
attack support functionality differs slightly from the one discussed previously. Although
I have used rules to handle such cases before (e.g. for the chitchat and out of scope
intents), this time more than one rule had to be defined for each intent of the attack
support feature to be able to address these kind of scenarios. Listing 6.16 shows how
the rules regarding the attack comparison functionality are implemented. In particular,
this means that besides the basic rule on line 2, where the corresponding action is always
executed when the respective intent is classified, two additional rules had to be created.
The first one starting at line 7 applies during the symptom form as specified on line

52 CHAPTER 6. IMPLEMENTATION

10. Additionaly, the parameter on line 14 had to be set to false in order to be able
to react appropriately. The other rule starting at line 16 is implemented the same way,
but tailored to the more info form. Setting the wait for user input parameter to false
is crucial, since we want to return to the form immediately once the user has received
its answer. Furthermore, I trained SecBot through stories to ask the users whether they
want to continue or cancel the form after such an input.

1 ## rules for attack comparison

2 - rule: execute action_provide_attack_comparison

3 steps:

4 - intent: request_attack_comparison

5 - action: action_provide_attack_comparison

6

7 - rule: don ’t wait for user input when execution of

8 action_provide_attack_comparison is unexpected input part 1

9 condition:

10 - active_loop: symptom_form

11 steps:

12 - intent: request_attack_comparison

13 - action: action_provide_attack_comparison

14 wait_for_user_input: false

15

16 - rule: don ’t wait for user input when execution of

17 action_provide_attack_comparison is unexpected input part 2

18 condition:

19 - active_loop: more_info_form

20 steps:

21 - intent: request_attack_comparison

22 - action: action_provide_attack_comparison

23 wait_for_user_input: false

Listing 6.16: Unexpected Input

6.4 Integration with Telegram

In order to make SecBot more user-friendly, a more intuitive user interface is needed
instead of Rasa’s current CLI. In this chapter, I therefore provide guidance on how to
integrate SecBot with the popular messaging platform Telegram.

As a first requirement, you need to have an own Telegram account. After logging into
your account you need to reach out to Telegram’s BotFather and create a new Telegram
bot. For this purpose, you enter the command ”/newbot” and choose a name and a user
name for your bot. Upon successful completion of these tasks, you will receive a token
from the BotFather that you can use to access the HTTP API.

Once you have received the bot credentials, you then have to set them in SecBot’s cre-
dentials.yml file. The token you got from the BotFather will be your access token and
the username of your Telegram bot will be the verify as indicated in Listing 6.17.

1 telegram:

2 access_token: "<your access token >"

6.4. INTEGRATION WITH TELEGRAM 53

3 verify: "<bot username >"

4 webhook_url: "<your_url.com/webhook >"

Listing 6.17: Adjusting Credentials File

Unfortunately, there is no way to set the webhook url directly to the localhost endpoint.
To use webhooks, the bot server must be reachable from the Internet and, in the case of
Telegram, a secure HTTPS connection is required. This means that you either use an
existing domain URL of yours or you buy such a domain name and then set the URL
accordingly.

Another possibility comes with the use of Ngrok. By setting up a Ngrok tunnel a new
HTTPS URL is created for free and connects your localhost to the Internet. This allows
you to test your assistant online with a real life channel. The only drawback is that
whenever you close the Ngrok tunnel and restart it, a new URL is generated, which then
has to be configured again with the assistant. There is also a way to obtain a permanent
URL, but it costs just like the previously mentioned solutions.

To set up a Ngrok tunnel is simple. You first have to create an account in order to be able
to download the software. It comes in a single executable file which you have to open.
The Rasa server runs on the localhost:5005. Therefore, you have to create an URL for
port 5005. To do this execute the following command: ngrok http 5005.

Figure 6.1: Create secure HTTPS endpoint

The Ngrok tunnel automatically creates both a HTTP and a HTTPS endpoint, as demon-
strated in Figure 6.1, which are then both forwarded to the localhost:5005. The newly
created HTTPS connection can then be assigned to the webhook url. Moreover, as shown
in Listing 6.18 on line 1, /webhooks/telegram/webhook must also be appended to the
newly created URL. Next, the webhook for the Telegram bot must be set. This is done
by running the command on line 3 in Listing 6.18 on a webbrowser of your choice, where
my bot token refers to to your bot’s access token and the url to send updates to being
the HTTPS link Ngrok provided you with.

54 CHAPTER 6. IMPLEMENTATION

1 webhook_url: "https ://48623 ec0afb5.ngrok.io/webhooks/telegram/webhook"

2

3 https ://api.telegram.org/bot{my_bot_token }/ setWebhook?url={

url_to_send_updates_to}

Listing 6.18: Setting up Webhook

Once you have completed the configuration, you can start the Rasa and the action server
by typing the following commands in the terminal: rasa run and rasa run actions. After
that, SecBot should be up and running on Telegram.

Chapter 7

Evaluation

This chapter first provides a case study that simulates a hypothetical real-world situation.
The second part then focuses on SecBot’s performance based on different configurations,
while the third part includes a discussion and limitations of SecBot. The evaluation was
conducted on an HP Pavilion x360 Convertible laptop, which has an Intel Core i5-7200
CPU and 16 GB of RAM.

7.1 Case Study

For this case study, we assume that there is a website called www.otc-premiumfashion.com
where otc stands for on-the-cheap. It belongs to a small company that buys quality
designer clothes from various verified cross-border and overseas outlets on the cheap,
and then retails them on its website with prices that are lower than those of any fashion
competitor. The business owner invested a lot in the website to attract as many customers
as possible and after a year the company was finally able to establish itself in this market.
However, investments in security have been severely neglected.
Suddenly, one day, many customers contacted customer support, with the vast majority
stating that they were unable to access the website. Those who could access it reported
that the website was very slow to respond. Right away the software engineer who was in
charge of the website was informed about the situation.
The software engineer was very skilled when it came to creating exquisite websites, but
even less so when it came to network monitoring and Internet security. Nevertheless,
during troubleshooting, the software engineer was able to make the following findings:

1. There have indeed been many request made to the server.

2. However, the individual requests showed no signs of transmitting excessively large
packets that would eventually saturate the available bandwidth.

3. There have been many different IPs involved in the requests.

4. The overwhelming majority of requests were connection requests (SYN requests),
as the TCP connection table was used almost to its maximum.

55

56 CHAPTER 7. EVALUATION

7.1.1 Attack Identification Scenario

The software engineer suspected that there was some malicious work behind the website’s
behaviour, but was not able the resolve the issues. Then, while browsing the web, he
came across SecBot and decided to give it a try. On the official website of the University
of Zurich, the company then acquired the software license.
Then, after acquiring the license and downloading the assistant, the software engineer
starts talking to SecBot as illustrated in Figure 7.1. The conversation starts with a casual
greeting and a request for help. After that, the software engineer first wants to try out
SecBot with the symptoms that the customers have submitted. He therefore enters the
descriptions sequentially and waits for SecBot’s response. Unfortunately, SecBot was not
able to identify the potential attack with the given problem description. But the software
engineer seems to be optimistic and wants to give SecBot a second chance by providing
additional symptoms. To do this, Figure 7.2 shows how he first asks SecBot whether this
is possible or not. Since SecBot supports this feature (cf. Subchapter 5.2.2), the software
engineer then delivers his findings (1, 3, and 4) all at once and specifies the server as the
new target. However, SecBot would also be able to process even larger and more complex
user utterances, mainly due to the current settings of the DIETClassifier (cf. Subchapter
6.1). After the submisson of the addtional symptoms, SecBot has been able to successfully
identify SYN Flood as the underlying attack causing the website availability issues. Note
that if the identification failed again, the software engineer could then again provide
additional symptoms to SecBot or simply start the process from the very beginning (cf.
Subchapter 6.2).

Figure 7.1: Failed Attack Identification Figure 7.2: Attack Identification

7.1. CASE STUDY 57

7.1.2 Attack Information Scenario

Now that the software engineer knows from what attack the website is being affected,
he now is interested in learning more about that attack. For this purpose, the attack
support feature allows him to gain insight into various aspects of an attack (cf. Subchapter
5.2). In order to understand the more detailed information about the attack, it must be
clear first what the attack is about in the first place. And since the software engineer
does not know anything about the attack’s approach, he therefore decides to first ask
SecBot to further explain the modus operandi of a SYN flood attack. This part of the
conversation is captured in Figure 7.3. You can see that the assistant responded with a
thorough explanation which clarifies the basic mechanism of the underlining attack. For
the software engineer, this answer was equally crystal clear, so that he now understands
why the company’s server resources have become so severely depleted, thus leading to low
computing performance or even inaccessibility.

Figure 7.3: Attack Explanation Figure 7.4: Attack Impacts

Having acquired the basic knowledge, the software engineer is now keen to know what
other effects the SYN flood attack might have, apart from the fact that the website is
no longer accessible as the company is still suffering from the ongoing attack. For that,
SecBot first notes that SYN flood belongs to the group of Distributed Denial-of-Service
attacks (cf. Subchapter 2.1). Then, as illustrated in Figure 7.4, we can see that the
University of Zurich chose the variant of providing a link as an attachment, which then
redirects the user to the actual document containing all the necessary information about
the impacts of DDoS attacks. The different variations of how to provide more than one
piece of information were discussed in Subchapter 6.3 in more detail.

Up to this point, the software engineer has been able to gather some important informa-
tion. But before finally asking the conversational agent how to mitigate this cyberthreat,
the software engineer wants to know if there are any other symptoms of this attack be-
sides the ones he has identified by himself and those reported by the customers that he
might have missed. This part of the conversation is shown in Figure 7.5. Other than
previously illustrated in Figure 7.4, SecBot now displays all the potential symptoms of
the main attack one after the other. As you can see, there are also a few problem specifi-
cations included, such as Website or service becomes unexpectedly slow or all of a sudden
unavailable, which the company’s customers have mentioned during their complaints.

58 CHAPTER 7. EVALUATION

Figure 7.5: Attack Symptoms

7.1.3 Protection Measures Scenario

Now the software engineer has a lot of insightful information about the identified attack.
He understands what the company is up against and is now determined to address the
issue. However, as mentioned at the beginning of the chapter, the software engineer is not
a security expert. Since SecBot has proven itself so far, the software engineer decides to ask
the assistant again and is now interested in knowing what countermeasures are available
to mitigate such attacks. As shown in Figure 7.6, SecBot presents a few solutions which
are based on the underlining main attack.

In a next step, the software engineer might ask for a suitable Web Application Firewall
for the www.otc-premiumclothing website. In this sense, SecBot first extracts all the
necessary information about the company, budget, industry, etc. Then, it connects to a
recommender system that provides suitable protection solutions for services. Preferably,
the recommender system will be a homegrown product of UZH, such as the already existing
recommender system MENTOR [22]. This would allow effective attack support from start
to finish. Unfortunately, this last part could not be implemented due to time constraints.

Figure 7.6: Attack Countermeasures

7.2. PERFORMANCE 59

7.2 Performance

Since the start of the thesis I have constantly adjusted SecBot’s configuration file. In order
to achieve a higher accuracy for the model, not only the training data had to be optimized,
but also the pipeline and the policies section within the config.yml file. Especially the
pipeline has experienced a lot of change. For this reason I will discuss the performance
of three pipeline settings regarding intent classification and entity recognition in order to
show whether this subgoal has been fulfilled.

For this purpose I have tested different pipeline configurations where the main differences
are illustrated in Table 7.1. The complete pipelines are included in Appendix D.
To conduct the tests, I have run all the benchmarks on Rasa’s CLI using the following
command in Listing 7.1:

1 rasa test nlu --config config.yml --cross -validation --runs 1 --folds 2

--out results/config

Listing 7.1: Run Benchmarks using CLI

The - - config flag allows to specify the configuration file, in this case config.yml, which
should be tested. By setting the - - cross-validation flag the test will run on different sets
of data. In particular, the - - folds 2 flag signifies that the existing nlu data will be split
into a training set and a validation set. By default, Rasa performs the testing three times
for each specified configuration. This actually consumes a lot of hardware resources. Due
to hardware restrictions, I have run these tests only once, as specified with the - - runs
flag.

Table 7.1: Configurations to test

Configuration Main Differences

initial
Uses SklearnIntentClassifier for intent clas-
sification and CRFEntityExtractor for entity
recognition

diet
Uses DIETClassifier for both intent classifica-
tion and for entity recognition

diet-masking
Hyperparameter use masked language model of
DIETClassifier is set to true and epochs to 400

The rasa test command generates various reports and charts which can be further used
for an in-depth analysis of the respective model. For the purpose of comparing different
pipelines, the subsequent diagrams show the average values for the following metrics:

• Precision: Also known as specificity, precision is defined as TruePositive
TruePositive+FalsePositives

.
More generally, precision indicates how accurate the model is, i.e., it indicates how

60 CHAPTER 7. EVALUATION

many of the predictions are actually correct (percentage of relevant results). This
metric is usually used when the cost of an incorrect prediction is high [56].

• Recall: Also known as sensitivity, recall is defined as TruePositive
TruePositive+FalseNegative

. Put in
more general terms, it represents the percentage of relevant results that are correctly
classified by the model. This metric is commonly used when the costs of a missed
prediction is high [56].

• F1-Score: The f1-score is an average of the precision and the recall and is defined as
2× (Precision×Recall

Precision+Recall
). This metric is needed if you want to achieve a balance between

precision and recall [56].

So let’s first get an overview of how well our dialogue management model performed in
terms of intent classification under the configurations shown in Table 7.1.

Figure 7.7: Intent Summary Overview

At first sight, it seems that the f1, precision and recall scores in Figure 7.7 all have the same
chart. The initial configuration depicts the actual configuration before the start of the
thesis and is represented by the blue bar. We quickly see that it has the worst performance
in all three categories compared to the other two configurations. Furthermore, the diet
configuration appears as a blue bar within the figure, while the orange bar represents the
diet-masking configuration.

To be able to directly compare the diet with the initial configuration, I have therefore
used the default settings for all customizable hyperparameters for both pipelines. As you
can see in Figure 7.7, the diet configuration performs best in all three areas. Regarding
recall, SecBot achieves an average value of 74.32% when using the diet pipeline, thus
obtaining a performance boost of 8.3% compared to the original configuration (66.02%).
For precision, an average value of 75.18% is obtained, corresponding to an increase of up
to 10.7% over the initial pipeline (64.48%). Finally, the f1-score for the diet configura-
tion also outperforms the initial configuration (61.31%) with an average value of 72.96%,
boosting SecBot’s performance by 11.7%. The results for the diet-masking configuration

7.2. PERFORMANCE 61

are only marginally lower than those of the diet configuration with 74.61% for the pre-
cision, 73.55% for the recall and 72.33% for the f1-score. One reason that configuration
using masking underperforms could be that this configuration needs more epochs to pass
by, or on the contrary, as we suspected, that the data set in question is not necessary a
complicated one. However, if we further increase the number of epochs, we then risk an
overfitted model that does not generalize well.
Nevertheless, the differences between these two pipelines are marginal. What is more
important is that compared to the original pipeline, both configuration achieve a perfor-
mance increase of around 10%, which is not nothing, but actually quite substantial when
it comes to accurately classifying intents. Whether we choose the diet configuration or the
diet-masking configuration now depends on how well they performed in terms of entity
recognition.

Figure 7.8: Entity Summary Overview

And now let’s have a look of how well the model performed in terms of entity recognition
using the different configurations. The colors for the different pipelines are the same as
in Figure 7.7. Other than before, the charts in Figure 7.8 do not look quite the same
as in the previous figure. Inspecting the values for the recall category, we can see that
again the diet pipeline outperforms the other two configurations with an average score of
79.58%. The performance boost compared to the initial configuration thereby amounts
to a whopping 16.5%. And again, the diet-masking pipeline underperforms only slightly
worse than the diet configuration with an average value of 77.76% , but still performs
substantially better than the original SecBot configuration.
In terms of precision, however, the initial configuration performs surprisingly well. In-
deed, with an average of 88.33% it marginally outperforms the diet-masking configuration
(87.20%) by a margin of 1.13%. The diet configuration still achieves a high precision value
of 82.17%, but performs worst compared to the other two pipelines with a significant per-
formance decrease of 6.16% from the originial pipeline.
Finally, in terms of f1-score, we again have a new top performer. In this case, the diet-
masking configuration with an average score of 81.93% just barely surpasses the diet
configuration (80.77%) and achieves a significant performance increase of 8.74% over the
initial configuration (73.19%).

62 CHAPTER 7. EVALUATION

As mentioned before, would it be only for the intent classification, we would obviously
drop the initial configuration for one of the other two configurations. However, in terms
of entity recognition, the results don’t seem so clear-cut. Each area has a different top
performer. In such a case, we need to prioritize which metric is most important to us.
And in our case, precision is the one we should aim for. In order to achieve high usability
the user intents must be correctly identified. Moreover, this step is followed by correctly
extracting entities. If entity recognition doesn’t work well, then the implemented cus-
tom actions might fail and the user will not receive accurate responses. This, in turn,
could lead to giving wrong information and proposing protection measures that are not
viable, resulting in a significant loss for the customer while the original problem still exist.
Therefore, we have to look for the optimal trade-off. In this sense, although the initial
configuration slightly outperforms the other two regarding precision, we need to favour
one of configurations using the DIETClassifier, as they relatively offer a massive perfor-
mance gain in terms of intent classification than the performance increase offered by the
original pipeline in terms of entity recognition.
Finally, the configuration chosen from now one is the diet-masking pipeline. Once again,
although the diet-masking configuration has a minimal lower precision value for the intent
classification, it offers all the more a relatively higher precision for entity extraction.

To sum up, the changes in both intent classification and entity recognition have given
SecBot a massive performance boost. In addition, SecBot now works much better on the
recall as well. And finally, since the f1-score is an average of the recall and precision, it
shows that SecBot’s overall performance now is quite well despite having a slightly lower
precision in entity extraction.

7.3 Discussion and Limitations

As we have seen in Subchapter 7.1, the case study deals with various aspects that were
implemented during the thesis. It starts with the transmission of all necessary informa-
tion, continuous by querying further attack details, until common countermeasures have
been proposed. However, the complexity encountered during the conversation in attack
identification scenario is sophisticated, as the first attempt to identify the attack failed,
but still not that high. Nevertheless, due to the configurations made (cf. Subchapter 6.1)
and various other features presented in Subchapter 6.2 SecBot is quite capable of handling
much more complex situations, where the user may, for example, want to provide larger
sentences in general, to specify additional symptoms multiple times or simply restart the
form after a failed identification. This also corresponds to the other scenarios presented
in Subchapter 7.1.2 and 7.1.3. The respective parts of the conversations are simply illus-
trated as one-turn interactions, which is meant to simplify the conversation flow so that
the reader can easily follow along with the figures. In reality, however, it is possible to
have a more contextualized conversation with SecBot (cf. Subchapter 6.3). Furthermore,
as seen in the use case scenarios, SecBot was able to always provide accurate and thorough
responses, thus always clarifying the user’s questions.

Moreover, as indicated in Subchapter 7.1.2, some implementation decisions have to be
made before going into production. This is especially the case when more than one piece

7.3. DISCUSSION AND LIMITATIONS 63

of information needs to be displayed, such as possible symptoms, impacts or protection
measures. I’ve shown two options, either display the information one after the other or
provide a link to a PDF file or even a new webpage where all the requested information
is presented. Depending on which channel SecBot is to be integrated into, there may be
other possibilities as well.

Another limitation of SecBot is the lack of training data regarding cyberthreats. As of
now, SecBot is well trained for three major attacks and chosen subtypes of them and can
also provide insighful information. But we all know that this covers only a small fraction
of cyberattacks since there exist a plethora of other attacks.

Furthermore, although SecBot has now become a more sophisticated prototype, it is
nevertheless very limited when it comes to identifying the possible attack. This is due
to another core functionality, namely the attack identification algorithm, which is still
underdeveloped and has only few symptoms hard-coded to specific cybersecurity threats.

What’s more is that as a rather newer framework, Rasa is in constant state of change.
On the one hand, this might be extremely advantageous since new and improved features
can greatly enhance your assistant, as the introduction of forms and rules to SecBot has
shown. On the other hand, this could constitute a new challenge as well. We have seen
it with the introduction of Rasa 2, where all code from Rasa 1 suddenly turned into
legacy code. Development after migration wasn’t an easy task either due to the lack of
detailed documentation and tutorials. Moreover, it even took several more releases to
cover unexpected bugs and errors in the new code of Rasa 2. With this in mind, keeping
SecBot up to date in this fast-moving environment will not be an easy task. However, this
is rather an environmental restriction. We could also implement SecBot with Google’s
DialogFlow or another more mature AI framework.

64 CHAPTER 7. EVALUATION

Chapter 8

Summary and Conclusions

The overall objective of this thesis was to provide a prototype that allows end-users
to input their demands for cybersecurity support, thus, generating an accurate answer
which then will be used by the user during the cybersecurity decision-making process.
In this sense, besides the refinement of the initial prototype of SecBot, new features and
knowledge had to be implemented.

After conveying the general knowledge about selected cybersecurity threats and chatbot
development, a brief overview of related work is given, with a particular focus towards
conversational agents. Thereafter, SecBot is presented in more detail. In particular, this
chapter highlights SecBot’s capabilities, while also providing an overview of SecBot’s ini-
tial implementation. After this first theoretical part of this work, the following chapter
first narrows down the scope of the thesis and then introduces the novel functionalities
and improvements on a high level. This chapter is subsequently followed by a detailed de-
scription of the current implementation of the proposed functionalities and improvements,
with an emphasis on the most important parts. Afterwards, the usability of SecBot is
evaluated through a case study based on three use case scenarios. In addition, this chap-
ter also provides an overview of SecBot’s NLU performance, which is then followed by a
discussion and limitations of SecBot.

As of now, SecBot is able to effectively gather all the necessary information from the user
in order to possibly identify a potential attack, while assuring that unexpected input will
be handled accordingly. Moreover, thorough explanations for attack-specific issues can
now be provided, either in the form of one-turn interactions or in a more advanced and
contextualized conversation. Lastly, due to the improved configuration, SecBot’s accuracy
could be significantly increased.

Future work should definitively focus primarily on the optimization of the attack tree
algorithm. As it stands today, this algorithm is highly restricted since it has a limited set of
symptoms related to some cyberattacks hard-coded. Moreover, expanding the knowledge
base is another area to focus on in the future. Therefore, not only the NLU data but also
the freshly created JSON file, whose structure allows for easy expansion of the document
with additional cyberthreats, should be extended with more examples of cyberattacks.
Additionally, as indicated in the case study, one should consider to have a cybersecurity

65

66 CHAPTER 8. SUMMARY AND CONCLUSIONS

recommender system, such as MENTOR [22], integrated into SecBot. This would not
only allow to directly suggest appropriate solutions based on the information provided by
the user, but would also reduce the usability overhead of recommender systems as SecBot
would act as an intermediary, meaning that users could specify their demands for the
requested protection in natural language. Finally, due to the increase in popularity, there
is a rising concern that chatbots could become the next gateway for cyberattacks. And
since SecBot is all about cybersecurity, secure usability for the user should be ensured.
Therefore, there are many techniques, such as end-to-end encryption, user authentication
and authorization, self-destructing messages or secure protocols that can be considered.

Bibliography

[1] 2019 data breach investigations report. Technical report, Verizon, 2019.

[2] 2020 user risk report exploring vulnerability and behaviour in a people-centric threat
landscape. Technical report, Proofpoint, 2020.

[3] Jenna Alburger. Rule-Based Chatbots vs. AI Chatbots: Key Differences,
2020. https://www.hubtype.com/blog/rule-based-chatbots-vs-ai-chatbots/,
last visit November 2020.

[4] Antaviana. The cybersecurity directory to tango with. [Online] https://

www.cybertango.io/, last visit October 2020.

[5] Dania Ben-Peretz. A Siri for Network Security: How Chatbots can Enhance Busi-
ness Agility, 2020. https://www.infosecurity-magazine.com/opinions/network-
chatbots-agility, last visit November 2020.

[6] Chris Brook. What is security as a service? a definition of secaas, benefits, examples,
and more. December 2018, [Online] https://digitalguardian.com/blog/what-
security-service-definition-secaas-benefits-examples-and-more, last visit
October 2020.

[7] Cisco. What Is Phishing? https://www.cisco.com/c/en/us/products/security/
email-security/what-is-phishing.html?dtid=osscdc000283, last visit Decem-
ber 2020.

[8] Cloudflare. Application Layer DDoS Attack. https://www.cloudflare.com/
learning/ddos/application-layer-ddos-attack/, last visit November, 2020.

[9] Cloudflare. HTTP Flood Attack. https://www.cloudflare.com/learning/ddos/
http-flood-ddos-attack/, last visit November, 2020.

[10] Cloudflare. SYN Flood Attack. https://www.cloudflare.com/learning/ddos/
syn-flood-ddos-attack/, last visit November, 2020.

[11] Cloudflare. What is a DDoS Attack? https://www.cloudflare.com/learning/
ddos/what-is-a-ddos-attack/, last visit December, 2020.

[12] Cloudflare. What is Malware? https://www.cloudflare.com/learning/ddos/
glossary/malware/, last visit November, 2020.

67

68 BIBLIOGRAPHY

[13] Louis Columbus. Cybersecurity spending to reach $123b in 2020. Au-
gust 2020, [Online] https://www.forbes.com/sites/louiscolumbus/2020/08/09/
cybersecurity-spending-to-reach-123b-in-2020/, last visit October 2020.

[14] Comodo Group. What is a Computer Virus and its Types, 2020.
https://antivirus.comodo.com/blog/computer-safety/what-is-virus-and-
its-definition/, last visit November 2020.

[15] Pádraig Cunningham, Matthieu Cord, and Sarah Jane Delany. Supervised learning.
In Machine learning techniques for multimedia, pages 21–49. Springer, 2008.

[16] Christos Douligeris and Aikaterini Mitrokotsa. Ddos attacks and defense mechanisms:
classification and state-of-the-art. Computer Networks, 44(5):643 – 666, 2004.

[17] Drift. An Introduction to A.I. Chatbots. https://www.drift.com/learn/chatbot/
ai-chatbots/, last visit November 2020.

[18] IBM Cloud Education. Natural Language Processing, 2020. https://www.ibm.com/
cloud/learn/natural-language-processing, last visit December 2020.

[19] Expert System. Chatbot: What is a Chatbot? Why are Chatbots Important?, 2020.
https://expertsystem.com/chatbot/, last visit November 2020.

[20] Bobby Filar. Artemis: an intelligent assistant for cyber defense, 2017. https://

www.elastic.co/de/blog/artemis-intelligent-assistant-cyber-defense, last
visit November 2020.

[21] Executive Agency for Small, Medium sized Enterprises, Capgemini Invent, Technop-
olis, and European Digital SME Alliance. Skills for SMEs: cybersecurity, Internet
of things and big data for small and medium sized enterprises. Publications Office,
2020.

[22] M. Franco, B. Rodrigues, and B. Stiller. MENTOR: The Design and Evaluation
of a Protection Services Recommender System. In 15th International Conference
on Network and Service Management (CNSM 2019), pages 1–7, Halifax, Canada,
October 2019. IEEE.

[23] M. F. Franco, B. Rodrigues, E. J. Scheid, A. Jacobs, C. Killer, L. Z. Granville,
and B. Stiller. SecBot: a Business-Driven Conversational Agent for Cybersecurity
Planning and Management. In 16th International Conference on Network and Service
Management (CNSM 2020), pages 1–7, Izmir, Turkey, 2020.

[24] Muriel Figueredo Franco. SecBot - GitLab Repository. https://gitlab.ifi.uzh.ch/
franco/secbot, last visit December 2020.

[25] Muriel Figueredo Franco, Bruno Rodrigues, and Burkhard Stiller. On the recom-
mendation of protection services. Technical Report No. ifi-2019.06, Department of
Informatics IfI, University of Zurich UZH, August 2019.

[26] Dr. Michael J. Garbade. A Simple Introduction to Natural Language Pro-
cessing, 2018. https://becominghuman.ai/a-simple-introduction-to-natural-
language-processing-ea66a1747b32, last visit December 2020.

BIBLIOGRAPHY 69

[27] Gartner. Forecasts Worldwide Information Security Spending to Exceed $124 Billion
in 2019, 2018. [Online] https://www.gartner.com/en/newsroom/press-releases/
2018-08-15-gartner-forecasts-worldwide-information-security-spending-

to-exceed-124-billion-in-2019, last visit October 2020.

[28] A. Girma, M. Garuba, J. Li, and C. Liu. Analysis of ddos attacks and an introduction
of a hybrid statistical model to detect ddos attacks on cloud computing environment.
In 2015 12th International Conference on Information Technology - New Generations,
pages 212–217, 2015.

[29] The Cyber Helpline. Supporting victims of cybercrime. https://

www.thecyberhelpline.com/, last visit November 2020.

[30] Hornetsecurity. Computer Worm. What are Computer Worms? Hornetsecu-
rity explains how Computer Worms work. https://www.hornetsecurity.com/en/
knowledge-base/computer-worm/, last visit November 2020.

[31] Imperva. What is a dns amplification attack. [Online] https://www.imperva.com/
learn/ddos/dns-amplification/, last visit November 2020.

[32] Arthur Jacobs, Ricardo Pfitscher, Rafael Ribeiro, Ronaldo Ferreira, Lisandro
Granville, and Sanjay Rao. Deploying natural language intents with lumi. pages
82–84, 08 2019.

[33] Eda Kavlakoglu. NLP vs. NLU vs. NLG: the differences between three natural
language processing concepts, 2020. https://www.ibm.com/blogs/watson/2020/
11/nlp-vs-nlu-vs-nlg-the-differences-between-three-natural-language-

processing-concepts/, last visit December 2020.

[34] Deepak Kumar, Narender Kumar, and Aditya Kumar. Computer viruses and chal-
lenges for anti-virus industry. International Journal Of Engineering And Computer
Science, pages 3869–3873, 2014.

[35] Lachlan Mackinnon, Liz Bacon, Diane Gan, George Loukas, David Chadwick, and
Dimitrios Frangiskatos. Cyber Security Countermeasures to Combat Cyber Terrorism,
pages 234–257. 03 2013.

[36] Malwarebytes. Computer Virus – Virus Protection & Removal. https://

www.malwarebytes.com/computer-virus/, last visit November, 2020.

[37] Malwarebytes. Malware. https://www.malwarebytes.com/malware/, last visit
November, 2020.

[38] Malwarebytes. Ransomware. https://www.malwarebytes.com/ransomware/, last
visit November, 2020.

[39] Mady Mantha. Introducing DIET: state-of-the-art architecture that out-
performs fine-tuning BERT and is 6X faster to train, 2020. https:

//blog.rasa.com/introducing-dual-intent-and-entity-transformer-diet-
state-of-the-art-performance-on-a-lightweight-architecture/, last visit
January 2021.

70 BIBLIOGRAPHY

[40] Nate Lord. What is Ransomware as a Service? Learn About the New Busi-
ness Model in Cybercrime, 2020. https://digitalguardian.com/blog/what-
ransomware-service-learn-about-new-business-model-cybercrime#:~:

text=Ransomware\%20is\%20a\%20type\%20of,phishing\%20emails\%20and\%
20infected\%20websites., last visit November 2020.

[41] Netscout. HTTP Flood DDoS Attacks. https://www.netscout.com/what-is-ddos/
http-flood-attacks, last visit November, 2020.

[42] Oracle. What Is a Chatbot? https://www.oracle.com/chatbots/what-is-a-
chatbot/, last visit November 2020.

[43] Snigdha Patel. What is Chatbot? Why are Chatbots Important?, 2020. https:

//www.revechat.com/blog/what-is-a-chatbot/, last visit November 2020.

[44] Jeff Petters. What is an it security audit? the basics. March 2020, [Online] https:
//www.varonis.com/blog/security-audit/, last visit November 2020.

[45] Casey Phillips. The 3 Types of Chatbots & How to Determine the Right One for Your
Needs, 2018. https://chatbotsmagazine.com/the-3-types-of-chatbots-how-
to-determine-the-right-one-for-your-needs-a4df8c69ec4c, last visit Novem-
ber 2020.

[46] Rapid7. Phishing Attacks: A Deep Dive with Prevention Tips. https:

//www.rapid7.com/de/cybersecurity-grundlagen/phishing-attacks/, last visit
December 2020.

[47] Rapid7. Spear Phishing Attacks. https://www.rapid7.com/de/cybersecurity-
grundlagen/spear-phishing-attacks/, last visit December 2020.

[48] Rapid7. Whaling Phishing Attacks. https://www.rapid7.com/de/cybersecurity-
grundlagen/whaling-phishing-attacks/, last visit December 2020.

[49] Rasa. Build contextual assistants that really help customers. https://rasa.com/,
last visit December 2020.

[50] Juniper Research. Chatbot Conversations to deliver $8 billion in Cost savings by 2022,
2017. https://www.juniperresearch.com/new-trending/analystxpress/july-
2017/chatbot-conversations-to-deliver-8bn-cost-saving, last visit Novem-
ber 2020.

[51] Margaret Rouse, Crystal Bedell, and Peter Loshin. computer worm. https:

//searchsecurity.techtarget.com/definition/worm, last visit November 2020.

[52] Margaret Rouse, Ben Lutkevich, and Robert Richardson. ransomware, 2020. https:
//searchsecurity.techtarget.com/definition/ransomware, last visit November
2020.

[53] Corero Network Security. How DDoS Attacks Impact Businesses Across Indus-
tries. https://www.corero.com/blog/how-ddos-attacks-impact-businesses-
across-industries/, last visit December 2020.

BIBLIOGRAPHY 71

[54] Penta Security. Types of ddos attacks: General breakdown. July 2020, [Online]
https://www.pentasecurity.com/blog/ddos-attacks-types-explanation/, last
visit November 2020.

[55] K. Shah, A. Salunke, S. Dongare, and K. Antala. Recommender systems: An overview
of different approaches to recommendations. In 2017 International Conference on In-
novations in Information, Embedded and Communication Systems (ICIIECS), pages
1–4, 2017.

[56] Koo Ping Shung. Accuracy, Precision, Recall or F1?, 2018. https:

//towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9,
last visit February 2021.

[57] Rob Sobers. 110 must-know cybersecurity statistics for 2020. September 2020, [On-
line] https://www.varonis.com/blog/cybersecurity-statistics/, last visit Oc-
tober 2020.

[58] SoftwareLab. What is a Computer Worm? https://softwarelab.org/what-is-a-
computer-worm/, last visit November 2020.

[59] Artificial Solutions. Chatbots: The definitive guide (2020). [Online] https:

//www.artificial-solutions.com/chatbots, last visit October 2020.

[60] Steve Morgan. Global Ransomware Damage Costs Predicted To Reach $20
Billion (USD) By 2021, 2019. https://cybersecurityventures.com/global-
ransomware-damage-costs-predicted-to-reach-20-billion-usd-by-2021/,
last visit November 2020.

[61] N. T. Thomas. An e-business chatbot using aiml and lsa. In 2016 International
Conference on Advances in Computing, Communications and Informatics (ICACCI),
pages 2740–2742, 2016.

[62] Jan Tissler. Phishing, Spear Phishing, Whaling & more: The attacks are be-
coming more sophisticated, 2020. https://www.dswiss.com/en/news/phishing-
spearfishing-und-more-sophisticated-attacks, last visit December 2020.

[63] Jessica Twentyman. The Cyber Helpline enlists chatbot in battle to help
cybercrime victims, 2019. https://diginomica.com/cyber-helpline-enlists-
chatbot-battle-help-cybercrime-victims, last visit November 2020.

[64] Estelle Verani. How to Build your Own Transactional Chatbot, 2020.
https://www.inbenta.com/en/blog/transactional-chatbot/#:~:text=
What\%20is\%20a\%20transactional\%20chatbot,to\%20accomplish\%20a\%
20specific\%20action., last visit November 2020.

[65] Suzanne Widup, Dave Hylender, Gabriel Bassett, Philippe Langlois, and Alex Pinto.
2020 verizon data breach investigations report. Technical report, Verizon, 05 2020.

72 BIBLIOGRAPHY

Abbreviations

ACK Acknowledgement (TCP 3-way handshake)
AI Artificial Intelligence
AIML Artificial Intelligence Markup Language
API Application Programming Interface
bps Bits per seconds
CEO Chief Executive Officer
CFO Chief Financial Officer
CIO Chief Information Officer
CLI Command Line Interface
CPU Central Processing Unit
CSG Communication Systems Group
DoS Denial-of-Service
DDoS Distributed Denial-of-Service
DNS Domain Name System
FBI Federal Bureau of Investigation
HTTP Hypertext Transfer Protocol
IBN Intent-based networking
ICMP Internet Control Message Protocol
IP Internet Protocol
ML Machine Learning
NLP Natural Language Processing
NLU Natural Language Understanding
OSI Open Systems Interconnection
PoC Proof of Concept
pps Packets per seconds
PUP Potentially Unwanted Program
RaaS Ransomware as a Service
RAM Random-Access Memory
rps Requests per seconds
SDK Software Development Kit
SME Small and medium sized enterprise
SYN Synchronize (TCP 3-way handshake)
TCP Transmission Control Protocol
UDP User Datagram Protocol
URL Uniform Resource Locator
WAF Web Application Firewall

73

74 ABBREVIATONS

List of Figures

4.1 SecBot’s desc symptom intent [24] . 20

4.2 SecBot’s Files encrypted story [24] . 20

6.1 Create secure HTTPS endpoint . 53

7.1 Failed Attack Identification . 56

7.2 Attack Identification . 56

7.3 Attack Explanation . 57

7.4 Attack Impacts . 57

7.5 Attack Symptoms . 58

7.6 Attack Countermeasures . 58

7.7 Intent Summary Overview . 60

7.8 Entity Summary Overview . 61

75

76 LIST OF FIGURES

List of Tables

2.1 Types of Distributed-Denial-of-Service attacks 6

2.2 Types of Malware . 8

2.3 Types of Phishing . 10

2.4 Subtypes of Conversational Chatbots . 13

5.1 Symptoms and Impacts of DDoS Attacks 25

5.2 Symptoms and Impacts of Malware Attacks 26

5.3 Symptoms and Impacts of Phishing Attacks 27

5.4 New Slots . 32

7.1 Configurations to test . 59

77

78 LIST OF TABLES

Listings

6.1 Configuration - Component Pipeline . 38
6.2 Configuration - Policies . 39
6.3 Symptom Form . 40
6.5 Rule - Activate Symptom Form . 41
6.6 Multi-Intent - Greet + Problem Description 42
6.7 Custom action - Validate Symptom Form 42
6.8 Rule - Submit Symptom Form . 43
6.9 Custom action - Submit Symptom Form 44
6.10 Rule - Handle unexpected Chitchat input 45
6.11 Story - Contextual Interjection . 46
6.12 Intent - Request Attack Information . 47
6.13 Attack Information JSON . 48
6.14 Attack Relationship Dictionary . 49
6.15 Retrieve Requested Attacks . 50
6.16 Unexpected Input . 52
6.17 Adjusting Credentials File . 52
6.18 Setting up Webhook . 54
7.1 Run Benchmarks using CLI . 59

79

80 LISTINGS

Appendix A

Installation Guidelines

This installation guideline is based on a Windows operating system. Therefore, the setup
for MacOS or Linux might differ. The source code of SecBot is publicly accessible on the
GitLab of the Institute of Informatics of the University of Zurich.

1. Initial Setup

(a) Install Python version 3.7.5

(b) Install Rasa with pip3 install rasa==2.2.2

(c) Install dependencies with pip3 install -r requirements.txt

(d) Install spaCy dependencies pip3 install rasa[spacy]

2. Clone GitLab Repository

(a) Clone the GitLab repository by running
git clone https://gitlab.ifi.uzh.ch/franco/secbot.git

in the command prompt

3. Starting SecBot

(a) Using the Command Line Interface

(i) Open the command prompt and direct to the directory where the source
code is located

(ii) Start the action server with rasa run actions

(iii) Start SecBot with rasa shell or rasa shell --debug

(b) Using Telegram

(i) View Subchapter 6.4

81

82 APPENDIX A. INSTALLATION GUIDELINES

Appendix B

Contents of the CD

• Final thesis as PDF

• Intermediate presentation as PDF

• Complete source code as ZIP

83

84 APPENDIX B. CONTENTS OF THE CD

Appendix C

SecBot Responses

1 responses:

2 utter_welcome:

3 - text: Hi, I’m SecBot! How can I assist you?

4 utter_ask_protection:

5 - text: What kind of protection do you need?

6 utter_attack_details:

7 - text: Fine. Sarching for protection against {attack_type} {

attack_name}

8 utter_attack_notif_name:

9 - text: Ok. Do you have more information about the {attack_name}

attack?

10 utter_attack_notification:

11 - text: Can you provide more details about the attack?

12 utter_attack_pattern:

13 - text: Fine. I am processing related problems ...

14 utter_budget_available:

15 - text: What is your budget available to expend in such a protection?

16 utter_general_confirmation:

17 - text: Ok. I got it.

18 - text: Right. I was able to process it

19 utter_goodbye:

20 - text: Bye

21 utter_greet:

22 - text: Hey! How can I help you?

23 utter_ask_continue:

24 - text: Do you want to continue?

25 utter_problem_desc:

26 - text: Can you describe the problem?

27 utter_problem_desc_required:

28 - text: You must give me more details or information about what is

happening to be able to help you.

29 utter_attack_not_identified:

30 - text: I was not able to identify the attack yet.

31 utter_attack_identified:

32 - text: ’I was able to identify the following attack:’

33 - text: ’You are suffering from following attack:’

34 - text: ’Could identify the attack:’

35 utter_target_info:

36 - text: Do you know what is the attack ’s target?

85

86 APPENDIX C. SECBOT RESPONSES

37 - text: Do you have information which is the attack ’s target?

38 - text: I was not able to understand which is the attack ’s target.

39 utter_ask_info:

40 - text: Do you have this information?

41 utter_ask_support:

42 - text: Yes , I can support you with this configuration.

43 utter_add_symptom:

44 - text: Do you have more symptoms or problems to describe?

45 utter_more_symptom:

46 - text: Sure. Give me more informartion then.

47 utter_amount_data:

48 - text: How much critical data do you have to protect?

49 utter_price:

50 - text: Do you know the price for this service?

51 utter_ask_problem:

52 - text: Can you describe what the problem is?

53 utter_affirm:

54 - text: Alright then.

55 utter_default:

56 - text: Sorry I didn ’t get that. Can you rephrase?

57 utter_please_rephrase:

58 - text: I’m sorry , I didn ’t quite understand that. Could you rephrase?

59 utter_explain_symptoms_1:

60 - text: You must provide at least one symptom or a brief problem

description to be able to help you!

61 utter_explain_symptoms_2:

62 - text: Adding more information increases the probability of

identifying the problem / attack

63 utter_explain_symptoms_target:

64 - text: I cannot help if I don ’t know what is being targeted!

65 utter_explain_more_info:

66 - text: More information is needed to be able to help you.

67 utter_explain_new_target:

68 - text: I need to be sure that the target has not been changed.

Otherwise I have to adjust it accordingly to identify the correct

problem / attack.

69 utter_ask_symptoms_target:

70 - text: Do you know what is the attack ’s target?

71 - text: Do you have information which is the attack ’s target?

72 - text: I was not able to understand which is the attack ’s target.

73 utter_ask_symptoms_1:

74 - text: Can you describe what the problem is?

75 utter_ask_symptoms_2:

76 - text: Fine. If you still have (other) symptoms or problems to

describe , please do so now.

77 utter_continue_symptom_description:

78 - text: Are you able to provide me with necessary information?

79 utter_stop_form:

80 - text: If you want to stop this form then write ’stop ’ and then

confirm with ’no’

81 utter_successfully_stopped_form:

82 - text: Successfully stopped the form. How can I help you now?

83 utter_no_help_possible:

84 - text: In this case , I am can not help you.

85 utter_ask_more_info:

86 - text: Please enter the additional symptoms

87

87 utter_ask_new_target:

88 - text: Has the target changed? If so, tell me the new target.

89 utter_chitchat/ask_mood:

90 - text: I’m fine , thanks! How can I help you?

91 - text: I’m doing great , thanks! How can I help you?

92 - text: I feel good , thanks! How can I help you?

93 utter_chitchat/ask_howbuilt:

94 - text: I was built with a lot of love and patience.

95 - text: Well , when two chatbots love each other very much ...

96 - text: They always ask how I was built , but never how I am...

97 - text: I was made by software engineers , but hard work is what built

me.

98 utter_chitchat/ask_howold:

99 - text: Old enough to be a bot!

100 - text: Age is just an issue of mind over matter. If you do not mind ,

it does not matter.

101 - text: My first git commit was many moons ago.

102 utter_chitchat/ask_isbot:

103 - text: Yes , I’m a bot.

104 - text: Yep , you guessed it, I’m a bot!

105 utter_chitchat/ask_ishuman:

106 - text: I’m not a human , I’m a bot!

107 utter_chitchat/ask_languagesbot:

108 - text: I can spell baguette in French , but unfortunately English is

the only language I can answer you in.

109 - text: Binary code and the language of love. And English.

110 - text: I was written in Python , but for your convenience I’ll

translate to English.

111 utter_chitchat/ask_time:

112 - text: It’s the most wonderful time of the year!

113 - text: It’s party time!

114 - text: Time is a human construct , you ’ll have to tell me.

115 - text: That ’s hard to say -- it’s different all over the world!

116 utter_chitchat/ask_whatismyname:

117 - text: It’s probably the one that your parents chose for you.

118 - text: I’d tell you , but there ’s restricted access to that chunk of

memory.

119 utter_chitchat/ask_whatisrasa:

120 - text: Rasa Open Source is a conversational AI framework for that

provides machine learning tools for building contextual assistants.

121 utter_out_of_scope/other:

122 - text: I can ’t help you with that , I’m sorry.

123 utter_out_of_scope/non_english:

124 - text: I only understand English , I’m sorry.

88 APPENDIX C. SECBOT RESPONSES

Appendix D

Tested Pipelines

1 ## initial configuration before the start of the thesis.

2 ## Line 10 to 18 had to be included so that the assistant still

3 ## worked with the current implementation

4 pipeline:

5 - name: "SpacyNLP"

6 - name: "SpacyTokenizer"

7 - name: "SpacyFeaturizer"

8 - name: "RegexFeaturizer"

9 - name: "CRFEntityExtractor"

10 - name: "EntitySynonymMapper"

11 - name: "SklearnIntentClassifier"

12 - name: ResponseSelector

13 epochs: 10

14 retrieval_intent: chitchat

15 - name: ResponseSelector

16 epochs: 10

17 retrieval_intent: out_of_scope

18 - name: FallbackClassifier

19 threshold: 0.3

1 ## diet configuration before the start of the thesis.

2 pipeline:

3 - name: "SpacyNLP"

4 - name: "SpacyTokenizer"

5 intent_tokenization_flag: True

6 intent_split_symbol: "+"

7 - name: "SpacyFeaturizer"

8 - name: "RegexFeaturizer"

9 - name: LexicalSyntacticFeaturizer

10 - name: CountVectorsFeaturizer

11 - name: CountVectorsFeaturizer

12 analyzer: "char_wb"

13 min_ngram: 1

14 max_ngram: 4

15 - name: "DIETClassifier"

16 epochs: 300

17 - name: "EntitySynonymMapper"

18 - name: ResponseSelector

19 epochs: 10

89

90 APPENDIX D. TESTED PIPELINES

20 retrieval_intent: chitchat

21 - name: ResponseSelector

22 epochs: 10

23 retrieval_intent: out_of_scope

24 - name: FallbackClassifier

25 threshold: 0.3

1 ## diet -masking configuration before the start of the thesis.

2 pipeline:

3 - name: "SpacyNLP"

4 - name: "SpacyTokenizer"

5 intent_tokenization_flag: True

6 intent_split_symbol: "+"

7 - name: "SpacyFeaturizer"

8 - name: "RegexFeaturizer"

9 - name: LexicalSyntacticFeaturizer

10 - name: CountVectorsFeaturizer

11 - name: CountVectorsFeaturizer

12 analyzer: "char_wb"

13 min_ngram: 1

14 max_ngram: 4

15 - name: "DIETClassifier"

16 epochs: 400

17 use_masked_language_model: True

18 - name: "EntitySynonymMapper"

19 - name: ResponseSelector

20 epochs: 10

21 retrieval_intent: chitchat

22 - name: ResponseSelector

23 epochs: 10

24 retrieval_intent: out_of_scope

25 - name: FallbackClassifier

26 threshold: 0.3

